2018年第19屆亞洲物理奧林匹亞競賽 及第49屆國際物理奧林匹亞競賽

國家代表隊複選考試

理論試題

2018年2月3日

13:30~16:30

考試時間:三小時

〈〈注意事項〉〉

- 一、限使用黑色或藍色原子筆作答。
- 二、本試題共有計算題六大題,每題25分,合計150分。
- 三、各計算題請在答案卷上指定之位置作答,每大題答案卷二頁。
- 四、可使用掌上型計算器(含科學工程式計算機)。

可能用到的數學公式(t為時間,x為任意物理量)

1.
$$f'(x) \equiv \frac{df}{dx}$$
, $f''(x) \equiv \frac{d^2f}{dx^2} = \frac{d}{dx} \left(\frac{df}{dx}\right)$;
 $\dot{x}(t) \equiv \frac{dx}{dt}$, $\ddot{x}(t) \equiv \frac{d^2x}{dt^2}$.

2.
$$\int (ax+b)^m dx = \frac{(ax+b)^{m+1}}{(m+1)a} , m \neq -1 ;$$
$$\int (ax+b)^{-1} dx = (1/a)\ln(ax+b) ;$$

$$\frac{d}{dx}(ax+b)^m = ma \cdot (ax+b)^{m-1}$$
; $\frac{d}{dx}\ln(ax+b) = a \cdot (ax+b)^{-1}$.

3.
$$\frac{de^{ax}}{dx} = e^{ax} , \quad \frac{d\sin ax}{dx} = a\cos ax , \quad \frac{d\cos ax}{dx} = -a\sin ax$$

$$\int \sin ax \, dx = -(1/a)\cos ax , \quad \int \cos ax \, dx = (1/a)\sin ax$$

4. 當
$$|x| \ll 1$$
, $(1+x)^{\alpha} \approx 1 + \alpha x$,
$$e^{x} \approx 1 + x$$
, $\sin x \approx x$, $\cos x \approx 1 - \frac{x^{2}}{2}$.

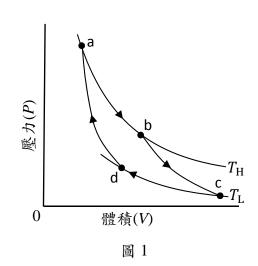
- 5. 線性、常係數、齊次一階微分方程式 ax'(t) + bx(t) = 0 的一般解形式為 $x(t) = \alpha e^{st}$, 其中s是右列一次方程式as + b = 0的根, 而 α 是積分常數,可由初始條件x(0)決定。
- 6. 線性、常係數、齊次二階微分方程式 ax''(t) + bx'(t) + cx(t) = 0 的一般解形式為 $x(t) = \alpha_1 e^{s_1 t} + \alpha_2 e^{s_2 t}$, 其中 s_1, s_2 是右列二次方程式 $as^2 + bs + c = 0$ 的根,而 α_1, α_2 是積分常數,可由初始條件x(0), x'(0)決定。

2018年第19屆亞洲物理及第49屆國際物理奧林匹亞競賽國家代表隊複選考試試題

本試題共有計算題六大題,每題25分,合計150分。

一、卡諾熱機

(A) 卡諾熱機在兩個不同溫度的熱庫 (heat reservoir)循環運作時,其過程均為可逆。 考慮如圖 1 所示的卡諾熱機,熱機由二可逆等溫過程 (a→b; c→d) 和二可逆絕熱過程 (b→c; d→a) 組成。試計算每一過程中熱機內氣體(假設為 n 莫耳的理想氣體) 熵的變化量。(以氣體壓力(P)、體積(V)、溫度(T)和其他相關常數表示。)(8分)



(B) 現考慮兩個具有相同熱容量 C的物質,其 起始溫度分別為 Ti和 T2。今有一卡諾熱

機以此二物質為其低溫和高溫熱庫,並假設卡諾熱機運行一循環時,二熱庫的 溫度變化,遠小於其個別的溫度值。

問此二物質的最終溫度為何?過程中卡諾熱機可作的最大功為何?(9分)

- (C) 現考慮三個具有相同熱容量 C的物質,其起始溫度分別為 Ti=100 K, T2=300 K 和 T3=300 K。假設我們可以利用前述的卡諾熱機在物質 1 和 2 之間運轉輸出功,並以另一在物質 1 和物質 3 之間運轉的卡諾熱機,將所輸出的功完全用於提高物質 3 的溫度。問:
- (i) 物質 1 所能達到的最低溫度 TL為何?(2 分)
- (ii) 物質 3 可以達到的最高溫度 TH 為何?(6分)

二、反射光栅

光柵乃由周期性的結構(如狹縫)所組成,圖2為入射光東照射在一「反射光柵」的 簡圖。我們常用單位長度(公尺)內有n個周期性結構來描述光柵,即每個周期性結 構寬度為1/n,以下簡稱為光柵的狹縫密度。

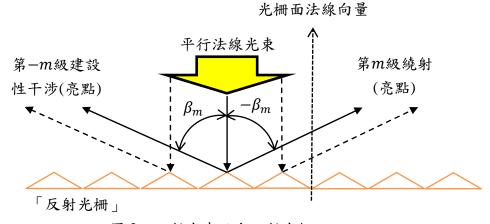


圖 2:入射光束正向入射光栅

- (A) 當入射光束以平行法線的方向入射「反射光柵」,則第m級繞射的角度為 β_m ,第-m級繞射的角度為 $-\beta_m$ (相對於法線為逆時針方向者為正、順時針方向者為負),兩者都在足夠遠的屏幕上產生亮點,證明 $\beta_m = \sin^{-1}(nm\lambda)$. (5分)
- (B) 一「反射光柵」每公分有 200 條狹縫,由(A)之條件,當入射光波長為500 nm時,估算此「反射光柵」可以看到的最大繞射級數m值為何?(3分)

考慮波長分別為 λ 與 $\lambda'(=\lambda+\Delta\lambda)$ 的兩個光波,當兩者經光柵m級繞射而產生之干涉亮紋,恰好都落在另一者所產生的暗紋位置上時,我們稱這兩個光波的m級繞射恰可分辨,由此我們可得出光柵的m級繞射解析度 $R=\frac{\lambda}{\Delta\lambda}$ 。

- (C) 考慮一個寬度為W、單位長度有n條狹縫的光柵,由(A)小題之結果,求光柵的m級繞射解析度R。(6分)
- (D) 鈉燈所發出的黃光有兩個波長,一為589.00 nm,另一為589.59 nm,如果要在第一級繞射時能夠分辨此二波長,則寬度為1公分的「反射光柵」最少需要有幾條狹縫?(3分)

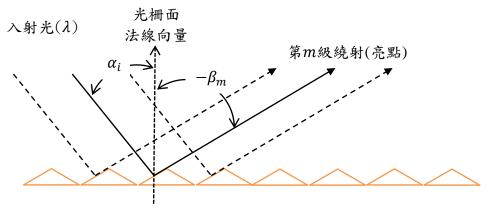


圖 3:入射光束與法線夾一角度α_i照射光柵(但垂直於狹縫方向)

- (E) 如圖 3 所示,入射光束以垂直於狹縫的方式照射(反射面與光柵的狹縫垂直,圖 3 中狹縫的方向垂直於紙面),且相對於「反射光柵」之法線方向以角度 α_i 射向 光柵,因此產生第m級繞射,其角度為 $-\beta_m$,並在足夠遠的屏幕上產生亮點。已 知光柵的狹縫密度為n,若 $m\lambda$ 可以寫為 α_i 、 β_m 、n的函數,即 $m\lambda = f(\alpha_i, \beta_m, n)$,求函數 $f(\alpha_i, \beta_m, n)$ 的表示式。(3 分)
- (F) 如圖 4 所示,若入射光束與狹縫方向垂直面間的夾角為 ϕ ,入射光與「反射光柵」之法線方向夾角為 α_i ,而第m級繞射的角度為 β_m 。已知光柵的狹縫密度為n,若 $m\lambda$ 可以寫成是 α_i 、 β_m 、n、 ϕ 的函數,即 $m\lambda = f(\alpha_i, \beta_m, n, \phi)$,求此函數 $f(\alpha_i, \beta_m, n, \phi)$ 。(5 分)

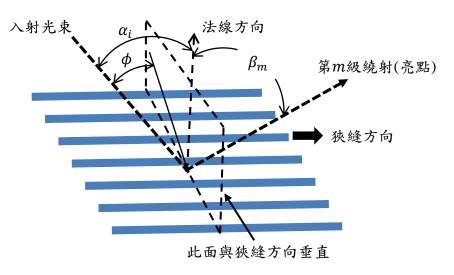


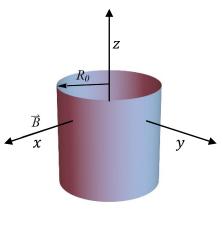
圖 4:入射光束與狹縫方向之間夾一角度Φ照射光柵。

三、奈米管上之帶電質點在磁場中的運動

如圖 5 所示,考慮一個質量為m、帶正電荷q的質點被限制在半徑為 R_0 的圓柱面上運動,且空間中有均勻磁場 $B = B\hat{x}$ 。

(A) 已知在圓柱座標中, $\hat{e}_s = \cos\phi \hat{x} + \sin\phi \hat{y}$ 、 $\hat{e}_{\phi} = -\sin\phi \hat{x} + \cos\phi \hat{y}$ 及 之構成 一組右手正 交基底。s, ϕ 其實就是一般的極座標,它們與 平面直角座標的關係為 $x = s \cdot \cos\phi$, $y = s \cdot \sin\phi$ 。在圓柱座標中,質點的位置可表示為 $r = R_0 \hat{e}_s + z \hat{z}$ 。證明此質點所滿足之 牛頓運動方程式,其 ϕ 分量可化簡為: $R_0 \ddot{\phi} - \omega_c \cos\phi \dot{z} = 0$;z分量則可化簡為: $\ddot{z} + \omega_c R_0 \dot{\phi} \cos\phi = 0$,其中 $\omega_c = qB/m$ 為此

質點在均勻磁場中的迴旋角頻率。(8分)



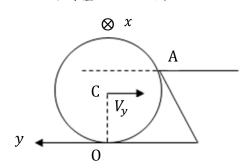
- 圖 5
- (B) 承(A)小題,已知初始時(t=0), $\phi(t)|_{t=0}=0$ 、 $\dot{z}(t)|_{t=0}=R_0\omega_z$,證明 $\dot{z}+\omega_cR_0\sin\phi=R_0\omega_z$ 。(3 分)
- (C) 承(A)、(B)小題,已知 $\dot{\phi}(t)\big|_{t=0} = \omega_{\phi}$,證明 $\dot{\phi}^2 + \omega_c^2 \sin^2 \phi 2\omega_c \omega_z \sin \phi \omega_{\phi}^2 = 0$ 。(5 分)
- (D) 承(C)小題,若 ω_z 、 ω_ϕ 皆為定值, ω_c 要滿足什麼條件,質點才能像螺線一樣環 繞圓柱運動?(5分)
- (E) 承(C)小題,若 $\omega_z = 0$, ω_ϕ 為定值, ω_c 要滿足什麼條件,質點在圓柱上的運動 軌跡才會是一條封閉曲線?(4分)

四、母球與檯邊的斜向碰撞

如圖 6 所示,在水平撞球檯面上,一質量為m、半徑為R的剛體均勻母球最初做無滑動的純滾動,斜向以 $\vec{V}=V_x\hat{x}+V_y\hat{y}$ 的平移速度,與光滑無摩擦的檯邊瞬間發生碰撞。已知母球繞通過質心之轉軸的轉動慣量為 $I_c\equiv mk^2$,檯邊比檯面高出

 $R+h(R>h\geq 0)$ 。假設檯邊亦為剛體,且母球與檯邊發生彈性碰撞,檯邊在碰撞時只能施給母球水平方向(平行於xy平面)的衝力,試回答下列各題。

平行檯面之直視圖



垂直檯面之俯視圖

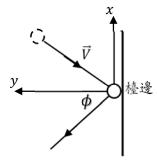
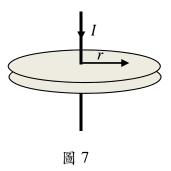


圖 6

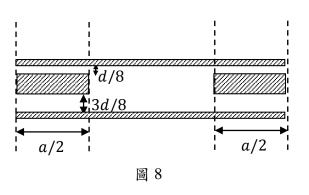
- (A) 母球在碰撞前之角速度的分量 ω_x 與 ω_v 各為何?(4分)
- (B) 若在碰撞時,檯邊施給母球之衝量的分量為 j_x 與 j_y ,則在碰撞後,母球之質心平移速度的分量 V'_x 、 V'_v ,與轉動角速度的分量 ω'_x 、 ω'_v 各為何?(8分)
- (C) 檯邊施給母球之衝量的分量 j_x 與 j_v 各為何?(8分)
- (D) 若母球在碰撞後之反射角(即母球平移速度與y軸的夾角)為 ϕ ,則 $\tan \phi$ 為何? (5分)

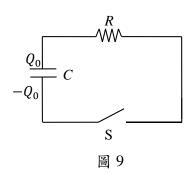
五、電容器與電感器中的電磁感應

(A)如圖 7 所示,一電容器由兩半徑為a之圓形金屬板組成, 金屬板間的距離為d,且金屬薄板之厚度可忽略不計,此電容由長直導線自圓心向外連結。今將此電容器中插入一寬 度a/2為金屬圓環後(此圓環與上、下金屬板之相對位置之 側視如圖 8 所示),此電容器 C再與一電阻 R 串連如圖 9 所示。在時間 t=0 時,電容器帶電荷 Q_0 ,開始接通開關 S,此

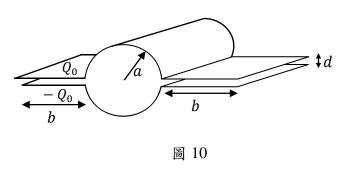


時假設金屬板邊緣效應所造成電場的變化可不計,且 $d \ll a \ll \frac{c}{\omega}(c$ 為光速),若空氣可以用真空電容率 ϵ_0 及磁導率 μ_0 描述,且 $\epsilon_0\mu_0=1/c^2$,試回答以下問題。





- (i) 試求電容器之電容C。(3分)
- (ii) 此電路中t時刻之電流i(t)(以流入金屬板為正並以 $C \cdot R$ 表示)。(2分)
- (iii) 求t時刻上圓形金屬板上、距離圓心r處之電流密度(通過單位長度之電流)(以 $C \cdot R \cdot Q_0$ 表示)。(4分)
- (iv) 試求電容器中距離中心軸r(r < a)、下金屬板上方z(z < d)處(金屬環外)之感 應磁場。並由此求出接通後到最後平衡由電容器流出去之總電磁能。(6分)
- (B) 如圖 10 所示,某生欲將電容器的電量傳到另一個電容器,因此他將圓形金屬板改成邊長為b之平行方形金屬板,金屬板間的距離仍為d,且金屬薄板之厚度可忽略不計,兩電容器經由兩半徑為a之半圓柱形金屬板相連。若在時間 t=0時,左電容器帶電荷Qo,各



金屬板上的電流皆為0。假設金屬板邊緣效應所造成電場的變化可不計,且 $d \ll a \ll \frac{c}{a}$,試估計

- (i) 電荷 Q_0 完全由左電容器轉移到右電容器所需之最小時間,(7.5)
- (ii) 單位時間流入圓柱中空腔之電磁能的最大值。(3分)

六、無線電力傳輸

無線電力傳輸(Wireless Power Transfer, WPT)是指將電磁能藉由電磁效應傳輸到負載裝置的技術,在傳輸能量過程中不使用實體導線。WPT 的概念早於 1890 年就由特斯拉用共振變壓器(resonant transformer)所展示,稱為特斯拉線圈。WPT 近年來被應用於諸如手機、可攜式電腦及電動車中之無線充電裝置。目前短距(約小於 1 公尺) WPT 技術採用電感功率耦合傳輸(Inductive Power Transfer)的方式。本題將討論WPT 相關的物理機制。考慮如圖 11 的電路:

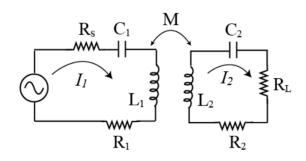


圖 11

圖中 I_1 與 L_1 , I_2 與 L_2 為輸入端與輸出端中之交流電流與線圈自感,交流頻率 ω 約為 $\sim 100~{\rm kHz}$,M為兩線圈耦合之互感, R_S 為電壓源電阻, R_L 為負載電阻; R_1 與 R_2 為 感應線圈之電阻。

- (A) 互感M可表示為 $M=k\sqrt{L_1L_2}$,其中k 代表兩線圈磁通量耦合係數。 證明 $k\leq 1$ 。(5分)
- (B) 考慮當此線圈形成耦合共振時,即 $\omega^2 L_1 C_1 = \omega^2 L_2 C_2 = 1$,求出加於負載 R_L 之功率 P_L 與輸入電流 I_1 之關係。(7分)
- (C) 計算此電路之能量轉換效率 $\eta(=P_L/輸入功率)$ 。(5分)

2018年第19屆亞洲物理及第49屆國際物理奧林匹亞競賽國家代表隊複選試題參考解答

第1題評分標準:

小題	內容	得	備
		分	註
(A)	寫出熱力學第一定律 $dQ = dU - pdV$	1	
8分	寫出理想氣體方程式 $pV = nRT$	1	
	結合熱力學第一定律及想氣體方程式寫出等溫過程中	2	
	$\Delta S = \int \frac{C_V}{T} dT + \int \frac{nR}{V} dV$		
		1	
	算出 $\Delta S_{c \to d} = nR \ln(V_{\rm d}/V_{\rm c})$	1	
	算出 $\Delta S_{b\to c} = 0$	1	
	算出 $\Delta S_{d\rightarrow a}=0$	1	
(B) 9分	寫出卡諾熱機可逆過程之條件: $dS_1 + dS_1 = \frac{dQ_1}{T_1} + \frac{dQ_2}{T_2} = 0$	2	
	由熱容量定義及能量守恆: $dQ = CdT \rightarrow \frac{dT_1}{T_1} = -\frac{dT_2}{T_2}$	2	
	積分得出T ₁ T ₂ =constant	2	
	求出最終溫度: $T_{\mathrm{f}} = \sqrt{T_1 T_2}$	1	
	求出熱機所能作的最大功 $W=C[T_1+T_2-2\sqrt{T_1T_2}]$	2	
(C)	得出 TL 最低溫為 100 K	2	
8分	將(B)的結果推廣到 3 個物質: $T_1T_2T_3$ =constant	1	
	由能量守恆得出:T1+T2+T3 亦為一常數	1	
	得出 $T_1+T_2+T_3=T_H+2T_0$; $T_1T_2T_3=T_H\cdot T_0^2$	2	
	算出 T _H = 400 K	2	

第2題評分標準:

小題	內容	得分	備註
(A)	寫出至第m級繞射的相鄰兩反射線的光程差	2	
5分	$\frac{1}{\pi} \times \sin \beta_m$		
	寫出形成m級建設性干涉的條件	2	
	$m\lambda = \frac{1}{n} \times \sin \beta_m.$		
	寫出答案: $\beta_m = \sin^{-1}(nm\lambda)$ 。	1	
(B)	寫 出 $nm\lambda = \sin \beta_m \le 1 $	1	
3分	求出 <i>m</i> ≤ 100	2	
(C) 6分	寫出 λ' 為亮紋之條件: $\frac{1}{n} \times \sin \beta'_m = m\lambda'$	1	
	寫出λ為暗紋之條件: $\frac{1}{n} \times \sin \beta'_m = \left(m + \frac{1}{Wn}\right) \lambda$	3	
	求出解析度: $R = \frac{\lambda}{\Delta \lambda} = Wnm$	2	
(D) 3 分	由 $\frac{\lambda}{\Delta\lambda}$ = 998.3 , 求出 n = 999 \circ	3	
(E)	求出光栅方程式	3	
3分	$f(\alpha_i, \beta_i, n) = \frac{1}{n} \times \sin \alpha_i + \frac{1}{n} \times \sin \beta_m$		
(F) 5分	寫出有效入射光的光程差: $\frac{1}{n}(\cos\phi\sin\alpha_i)$	1	
	寫出反射至第m級繞射的有效光程差:	1	
	$\frac{1}{\pi}(\cos\phi\sin\beta_m)$		
	求出光栅方程式	3	
	$f(\alpha_i, \beta_i, n, \phi)$		
	$= \frac{1}{n} \left(\sqrt{\sin^2 \alpha_i - \sin^2 \phi} + \sqrt{\sin^2 \beta_m - \sin^2 \phi} \right)$		

第3題評分標準:

小題	內容	得分	備註
(A)	求出 $\mathbf{v} = R_0 \dot{\phi} \hat{\mathbf{e}}_{\phi} + \dot{z}\hat{\mathbf{z}}$	1	
8分	求出磁力:	1	
	$q\mathbf{v} \times \mathbf{B} = qB\sin\phi \hat{\mathbf{e}}_s + qB\dot{z}\cos\phi \hat{\mathbf{e}}_\phi - qB\dot{\phi}\cos\phi \hat{\mathbf{z}}$		
	求出 $\mathbf{a} = R_0 \ddot{\phi} \hat{\mathbf{e}}_{\phi} - R_0 \dot{\phi}^2 \hat{\mathbf{e}}_s + \ddot{z}\hat{\mathbf{z}}.$	1	
	說明不必考慮S分量	1	
	求出運動方程式φ分量:	2	
	$mR_0\ddot{\phi} = qB\dot{z}\cos\phi \Rightarrow R_0\ddot{\phi} - \omega_c\dot{z}\cos\phi = 0.$		
	z求出運動方程式分量:	2	
	$m\ddot{z} = -qB\dot{\phi}\cos\phi \Rightarrow \ddot{z} + R_0\omega_c\dot{\phi}\cos\phi = 0.$		
(B)	說明利用初始條件 $\phi(0)=0$ 、 $\dot{z}(0)=R_0\omega_z$ 及運動方程	1	
3分	式 🗘 分量 (5) 式		
	積分得出: $\dot{z} + R_0 \omega_c \sin \phi = R_0 \omega_z$	2	
(C) 5分	寫出受磁力後之共振角頻率 $\omega_1 = \sqrt{\frac{k_1}{M}} = \sqrt{\frac{k - \partial F_z/\partial z}{M}}$ 。	2	
	說明 $\dot{\phi} \times (4) + \dot{z} \times (5) = R_0^2 \dot{\phi} \ddot{\phi} + \dot{z} \ddot{z} = 0$,對時間 t 積分,或利用力學能守恆得出: $R_0^2 \dot{\phi}^2 + \dot{z}^2 = R_0^2 \omega_\phi^2 +$	2	
	$R_0^2 \omega_z^2$		
	說明利用 $\dot{z} + R_0 \omega_c \sin \phi = R_0 \omega_z$ 化簡上式	1	
	化簡求出	2	
	$\dot{\phi}^2 + \omega_c^2 \sin^2 \phi - 2\omega_c \omega_z \sin \phi - \omega_\phi^2 = 0.$		
(D)	由 $\dot{\phi}^2 \geq 0$ 得出不等式:	1	
5分	$\omega_c^2 \sin^2 \phi - 2\omega_c \omega_z \sin \phi - \omega_\phi^2 \le 0.$		
	解出不等式: $\frac{\omega_z - \sqrt{\omega_z^2 + \omega_\phi^2}}{\omega_c} \le \sin\phi \le \frac{\omega_z + \sqrt{\omega_z^2 + \omega_\phi^2}}{\omega_c}$	1	
	得出條件: $\frac{\omega_z - \sqrt{\omega_z^2 + \omega_\phi^2}}{\omega_c} \le -1 \underline{1} \underline{\frac{\omega_z + \sqrt{\omega_z^2 + \omega_\phi^2}}{\omega_c}} \ge 1$	2	
	說明第一個條件比較強得到 $\omega_c \leq \sqrt{\omega_z^2 + \omega_\phi^2} - \omega_z$	1	
(D)	利用 $\omega_z = 0$,將(9)式化簡為 $\omega_c^2 \sin^2 \phi - \omega_\phi^2 \le 0$ 。	1	
4分	解出不等式: $- \omega_{\phi}/\omega_{c} \leq \sin\phi \leq \omega_{\phi}/\omega_{c} $	1	
	得出條件: $ \omega_{\phi}/\omega_{c} \leq 1$ 時, ϕ 被限制在區間 $[-\phi_{0},\phi_{0}]$	1	
	說明運動軌跡是一條封閉曲線	1	

第4題評分標準:

小題	內容	得分	備註
(A)	寫出圓球純滾動的條件:	2	
4分	$\vec{V} + \vec{\omega} \times (-R\hat{z}) = 0$		
	得出 x 分量: $\omega_x = -\frac{v_y}{R}$	1	
	得出 y 分量: $\omega_y = \frac{V_x}{R}$	1	
(B)	說明光滑檯邊施給母球之衝量 $j_z=0$,以致檯面施給球	2	
8分	底部之衝量 $J_z=0$,連帶使球底部的摩擦力衝量		
	$J_x = J_y = 0$ °		
	說明衝量等於動量變化	1	
	得出 $V_x' = V_x + \frac{j_x}{m} = V_x$	1	
	得出 $V_y' = V_y + \frac{j_y}{m}$	1	
	說明繞質心之角衝量等於角動量變化	1	
	得出 $\omega_x' = \omega_x - \frac{j_y h}{I_c}$	1	
	得出 $\omega_y' = \omega_y + \frac{j_x h}{I_c} = \omega_y$	1	
(C) 8分	說明光滑檯邊施給母球之衝量 $j_x = 0$ 。因此母球與檯邊的碰撞為彈性碰撞,即碰撞前後的總動能 E 相等	1	
	寫出能量守恆式如	2	
	$\frac{2E}{m} = \left[(V_x)^2 + \left(V_y + \frac{j_y}{m} \right)^2 \right] + k^2 \left[\left(\omega_x - \frac{j_y h}{I_c} \right)^2 + \left(\omega_y \right)^2 \right]$		
	$= \left[(V_x)^2 + (V_y)^2 \right] + k^2 \left[(\omega_x)^2 + (\omega_y)^2 \right]$		
	化簡得到 $\left[\frac{j_y}{m}\left(2V_y + \frac{j_y}{m}\right)\right] + k^2 \left[\frac{j_y h}{l_c}\left(-2\omega_x + \frac{j_y h}{l_c}\right)\right]$	1	
	說明利用 (1) 式 $\omega_x = -V_y/R$, 並將 (1) 式帶入能量守恆式 化簡	2	
	得出 $j_y = -2mV_y \frac{1+\frac{h}{R}}{1+\frac{h^2}{k^2}}$	2	

(D) 5分	利用(2)、(3)雨式,得出 $\tan \phi = \frac{v_y'}{v_x'} = \frac{v_y + \frac{j_y}{m}}{v_x}$	2	
	說明利用(9)式之結果	1	
	將(9)式之結果代入上式,化簡得出	2	
	$\tan \phi = \frac{V_x}{V_y} \left[\frac{1 + \frac{h^2}{k^2}}{1 + \frac{h}{R} \left(2 - \frac{Rh}{k^2}\right)} \right].$		

第5題評分標準:

小題	內容	得分	備註
(A)(i) 3 分	列出 $V = \frac{\sigma_2}{\varepsilon_0}d = \frac{\sigma_1}{\varepsilon_0}\frac{d}{8} + \frac{\sigma_1}{\varepsilon_0}\frac{3d}{8}$,並得出 $\sigma_1 = 2\sigma_2$	2	
371	列出 $V = \frac{\sigma_2}{\varepsilon_0} d = \frac{\sigma_1}{\varepsilon_0} \frac{\alpha}{8} + \frac{\sigma_1}{\varepsilon_0} \frac{3\alpha}{8}$,並得出 $\sigma_1 = 2\sigma_2$ 得出 $C = \frac{7\pi\alpha^2\varepsilon_0}{4d}$	1	
(A)(ii) 2分	列出 $\frac{q}{c} + Ri = 0$ 。	1	
	得出故 $q(t) = Q_0 e^{-t/RC}$	1	
(A)(iii) 4 分	$\sigma_1(t) = \frac{8Q_0}{7\pi a^2} e^{-t/RC} \cdot \sigma_2(t) = \frac{4Q_0}{7\pi a^2} e^{-t/RC}$	1	
	說明半徑在r與α間圓環之電荷增加率 = 流入此區間的電流 = 2πrj	1	
	得出 $a/2 < r < a$, $j = -(1 - \frac{r^2}{a^2}) \frac{4Q_0}{7\pi rRC} e^{-t/RC}$	1	
	得出 $0 < r < \frac{a}{2}$, $j = -(1 - \frac{4r^2}{7a^2}) \frac{Q_0}{2\pi rRC} e^{-t/RC}$	1	
(A)(iv) 6 分	得出 $0 < r < \frac{a}{2}$, $\vec{B} = -\frac{2\mu_0 r}{7\pi a^2 RC} \frac{Q_0}{RC} e^{-\frac{t}{RC}} \hat{\phi}$	2	
	得出 $\frac{a}{2}$ < r < a , \vec{B} = $-\frac{\mu_0(8r^2-a^2)}{14\pi r a^2} \frac{Q_0}{RC} e^{-\frac{t}{RC}} \hat{\phi}$	2	
	求出總流出電磁能為 $\frac{2dQ_0^2}{7\pi\epsilon_0a^2}$	2	
(B)(i) 7 分	列出 $\frac{q_1}{C} - \frac{L}{2}\frac{di}{dt} - \frac{q_2}{C} - \frac{L}{2}\frac{di}{dt} = 0$	2	
	列出 $\frac{dq_1}{dt} = -i = -\frac{dq_2}{dt}$	1	
	積分得出 $q_2(t) = \frac{Q_0}{2}(1 - \cos \omega t)$,	2	
	$q_1(t) = \frac{Q_0}{2}(1 + \cos \omega t).$		
	求出轉移到右電容器所需之最小時間 $\frac{a\pi}{c}\sqrt{\frac{\pi b}{2d}}$ 。	2	
(B)(ii) 3 分	求出感應電場 $\vec{E} = -\frac{\mu_0 Q_0}{2bLC\omega}\cos\omega t r\hat{\phi}$	1	
	求出磁場 $\vec{B} = -\frac{\mu_0 Q_0}{bLC\omega} \sin \omega t \hat{z}$	1	
	求出流入圓柱中空腔之電磁能最大值 $\frac{(dc^2\mu_0Q_0)^2}{2\pi\omega^2a^2b^3}$	1	

第6題評分標準:

小題	內容	得分	備註
(A) 5分	寫出系統能量 $E = \frac{1}{2}L_1I_1^2 + MI_1I_2 + \frac{1}{2}L_2I_2^2$	2	
	由 $E \ge 0$ 得出 $M \le \sqrt{L_1 L_2}$ 或 $k \le 1$	3	
(B) 7分	寫出主迴路 Kirchoff 電壓定律 $V_1 = I_1 Z_1 - M \frac{dI_2}{dt} = I_1 Z_1 - j\omega MI_2$	2	
	寫出次主迴路 Kirchoff 電壓定律	2	
	$I_{2}Z_{2} - M\frac{dI_{1}}{dt} = I_{2}Z_{2} - j\omega MI_{1} = 0$		
	得出 $I_2 = \frac{j\omega M}{Z_2} I_1 = \frac{j\omega M}{R_L + R_2} I_1$	1	
	求出負載功率 $P_{L} = \frac{\omega^{2} M^{2} R_{L}}{\left(R_{L} + R_{2}\right)^{2}} I_{1}^{2}$	2	
(C) 5分	寫出 $P_{\rm in} = I_1^2 \left[(R_1 + R_{\rm s}) + \frac{\omega^2 M^2}{R_{\rm L} + R_2} \right]$	2	
	得出 $\eta = \frac{\omega^2 M^2 R_L}{\omega^2 M^2 (R_L + R_2) + (R_S + R_1) (R_L + R_2)^2}$	3	
(D) 8分	列出極值條件 $\omega^2 M^2 R_2 + (R_S + R_1)(R_L + R_2)^2 - 2R_L(R_S + R_1)(R_L + R_2) = 0$	2	
	引入 $\beta = R_L/R_2$,化簡上式得出 $(\beta+1)^2 - 2(\beta+1) - 1/\alpha = 0$	2	
	求出 $\beta = \sqrt{1+1/\alpha}$	2	
	求出 η 的極值 $\eta_{\text{max}} = (1+2\alpha)-2\sqrt{\alpha(1+\alpha)}/(8r)$	2	
L		1	L

2018年第19屆亞洲物理及第49屆國際物理奧林匹亞競賽 國家代表隊複選考試參考解答

第1題評分標準:

小題	內容	得	備
		分	註
(A)	寫出熱力學第一定律 $dQ = dU - pdV$	1	
8分	寫出理想氣體方程式 $pV = nRT$	1	
	結合熱力學第一定律及想氣體方程式寫出等溫過程中	2	
	$\Delta S = \int \frac{C_V}{T} dT + \int \frac{nR}{V} dV$		
		1	
	算出 $\Delta S_{c \to d} = nR \ln(V_{\rm d}/V_{\rm c})$	1	
	算出 $\Delta S_{b\to c} = 0$	1	
	算出 $\Delta S_{d\rightarrow a}=0$	1	
(B) 9分	寫出卡諾熱機可逆過程之條件: $dS_1 + dS_1 = \frac{dQ_1}{T_1} + \frac{dQ_2}{T_2} = 0$	2	
	由熱容量定義及能量守恆: $dQ = CdT \rightarrow \frac{dT_1}{T_1} = -\frac{dT_2}{T_2}$	2	
	積分得出T ₁ T ₂ =constant	2	
	求出最終溫度: $T_{\mathrm{f}} = \sqrt{T_1 T_2}$	1	
	求出熱機所能作的最大功 $W=C[T_1+T_2-2\sqrt{T_1T_2}]$	2	
(C)	得出 TL 最低溫為 100 K	2	
8分	將(B)的結果推廣到 3 個物質: $T_1T_2T_3$ =constant	1	
	由能量守恆得出:T1+T2+T3 亦為一常數	1	
	得出 $T_1+T_2+T_3=T_H+2T_0$; $T_1T_2T_3=T_H\cdot T_0^2$	2	
	算出 T _H = 400 K	2	

第2題評分標準:

小題	內容	得分	備註
(A)	寫出至第m級繞射的相鄰兩反射線的光程差	2	
5分	$\frac{1}{\pi} \times \sin \beta_m$		
	寫出形成m級建設性干涉的條件	2	
	$m\lambda = \frac{1}{n} \times \sin \beta_m.$		
	寫出答案: $\beta_m = \sin^{-1}(nm\lambda)$ 。	1	
(B)	寫 出 $nm\lambda = \sin \beta_m \le 1 $	1	
3分	求出 <i>m</i> ≤ 100	2	
(C) 6分	寫出 λ' 為亮紋之條件: $\frac{1}{n} \times \sin \beta'_m = m\lambda'$	1	
	寫出λ為暗紋之條件: $\frac{1}{n} \times \sin \beta'_m = \left(m + \frac{1}{Wn}\right) \lambda$	3	
	求出解析度: $R = \frac{\lambda}{\Delta \lambda} = Wnm$	2	
(D) 3 分	由 $\frac{\lambda}{\Delta\lambda}$ = 998.3 , 求出 n = 999 \circ	3	
(E)	求出光栅方程式	3	
3分	$f(\alpha_i, \beta_i, n) = \frac{1}{n} \times \sin \alpha_i + \frac{1}{n} \times \sin \beta_m$		
(F) 5分	寫出有效入射光的光程差: $\frac{1}{n}(\cos\phi\sin\alpha_i)$	1	
	寫出反射至第m級繞射的有效光程差:	1	
	$\frac{1}{\pi}(\cos\phi\sin\beta_m)$		
	求出光栅方程式	3	
	$f(\alpha_i, \beta_i, n, \phi)$		
	$= \frac{1}{n} \left(\sqrt{\sin^2 \alpha_i - \sin^2 \phi} + \sqrt{\sin^2 \beta_m - \sin^2 \phi} \right)$		

第3題評分標準:

小題	內容	得分	備註
(A)	求出 $\mathbf{v} = R_0 \dot{\phi} \hat{\mathbf{e}}_{\phi} + \dot{z}\hat{\mathbf{z}}$	1	
8分	求出磁力:	1	
	$q\mathbf{v} \times \mathbf{B} = qB\sin\phi \hat{\mathbf{e}}_s + qB\dot{z}\cos\phi \hat{\mathbf{e}}_\phi - qB\dot{\phi}\cos\phi \hat{\mathbf{z}}$		
	求出 $\mathbf{a} = R_0 \ddot{\phi} \hat{\mathbf{e}}_{\phi} - R_0 \dot{\phi}^2 \hat{\mathbf{e}}_s + \ddot{z}\hat{\mathbf{z}}.$	1	
	說明不必考慮S分量	1	
	求出運動方程式φ分量:	2	
	$mR_0\ddot{\phi} = qB\dot{z}\cos\phi \Rightarrow R_0\ddot{\phi} - \omega_c\dot{z}\cos\phi = 0.$		
	z求出運動方程式分量:	2	
	$m\ddot{z} = -qB\dot{\phi}\cos\phi \Rightarrow \ddot{z} + R_0\omega_c\dot{\phi}\cos\phi = 0.$		
(B)	說明利用初始條件 $\phi(0)=0$ 、 $\dot{z}(0)=R_0\omega_z$ 及運動方程	1	
3分	式 🗘 分量 (5) 式		
	積分得出: $\dot{z} + R_0 \omega_c \sin \phi = R_0 \omega_z$	2	
(C) 5分	寫出受磁力後之共振角頻率 $\omega_1 = \sqrt{\frac{k_1}{M}} = \sqrt{\frac{k - \partial F_z/\partial z}{M}}$ 。	2	
	說明 $\dot{\phi} \times (4) + \dot{z} \times (5) = R_0^2 \dot{\phi} \ddot{\phi} + \dot{z} \ddot{z} = 0$,對時間 t 積分,或利用力學能守恆得出: $R_0^2 \dot{\phi}^2 + \dot{z}^2 = R_0^2 \omega_\phi^2 +$	2	
	$R_0^2\omega_z^2$		
	說明利用 $\dot{z} + R_0 \omega_c \sin \phi = R_0 \omega_z$ 化簡上式	1	
	化簡求出	2	
	$\dot{\phi}^2 + \omega_c^2 \sin^2 \phi - 2\omega_c \omega_z \sin \phi - \omega_\phi^2 = 0.$		
(D)	由 $\dot{\phi}^2 \ge 0$ 得出不等式:	1	
5分	$\omega_c^2 \sin^2 \phi - 2\omega_c \omega_z \sin \phi - \omega_\phi^2 \le 0.$		
	解出不等式: $\frac{\omega_z - \sqrt{\omega_z^2 + \omega_\phi^2}}{\omega_c} \le \sin\phi \le \frac{\omega_z + \sqrt{\omega_z^2 + \omega_\phi^2}}{\omega_c}$	1	
	得出條件: $\frac{\omega_z - \sqrt{\omega_z^2 + \omega_\phi^2}}{\omega_c} \le -1 \underline{1} \underline{\frac{\omega_z + \sqrt{\omega_z^2 + \omega_\phi^2}}{\omega_c}} \ge 1$	2	
	說明第一個條件比較強得到 $\omega_c \leq \sqrt{\omega_z^2 + \omega_\phi^2} - \omega_z$	1	
(D)	利用 $\omega_z = 0$,將(9)式化簡為 $\omega_c^2 \sin^2 \phi - \omega_\phi^2 \le 0$ 。	1	
4分	解出不等式: $- \omega_{\phi}/\omega_{c} \leq \sin\phi \leq \omega_{\phi}/\omega_{c} $	1	
	得出條件: $ \omega_{\phi}/\omega_{c} \leq 1$ 時, ϕ 被限制在區間 $[-\phi_{0},\phi_{0}]$	1	
	說明運動軌跡是一條封閉曲線	1	

第4題評分標準:

小題	內容	得分	備註
(A)	寫出圓球純滾動的條件:	2	
4分	$\vec{V} + \vec{\omega} \times (-R\hat{z}) = 0$		
	得出 x 分量: $\omega_x = -\frac{v_y}{R}$	1	
	得出 y 分量: $\omega_y = \frac{V_x}{R}$	1	
(B)	說明光滑檯邊施給母球之衝量 $j_z=0$,以致檯面施給球	2	
8分	底部之衝量 $J_z=0$,連帶使球底部的摩擦力衝量		
	$J_x = J_y = 0$ °		
	說明衝量等於動量變化	1	
	得出 $V_x' = V_x + \frac{j_x}{m} = V_x$	1	
	得出 $V_y' = V_y + \frac{j_y}{m}$	1	
	說明繞質心之角衝量等於角動量變化	1	
	得出 $\omega_x' = \omega_x - \frac{j_y h}{I_c}$	1	
	得出 $\omega_y' = \omega_y + \frac{j_x h}{I_c} = \omega_y$	1	
(C) 8分	說明光滑檯邊施給母球之衝量 $j_x = 0$ 。因此母球與檯邊的碰撞為彈性碰撞,即碰撞前後的總動能 E 相等	1	
	寫出能量守恆式如	2	
	$\frac{2E}{m} = \left[(V_x)^2 + \left(V_y + \frac{j_y}{m} \right)^2 \right] + k^2 \left[\left(\omega_x - \frac{j_y h}{I_c} \right)^2 + \left(\omega_y \right)^2 \right]$		
	$= \left[(V_x)^2 + (V_y)^2 \right] + k^2 \left[(\omega_x)^2 + (\omega_y)^2 \right]$		
	化簡得到 $\left[\frac{j_y}{m}\left(2V_y + \frac{j_y}{m}\right)\right] + k^2 \left[\frac{j_y h}{l_c}\left(-2\omega_x + \frac{j_y h}{l_c}\right)\right]$	1	
	說明利用 (1) 式 $\omega_x = -V_y/R$, 並將 (1) 式帶入能量守恆式 化簡	2	
	得出 $j_y = -2mV_y \frac{1+\frac{h}{R}}{1+\frac{h^2}{k^2}}$	2	

(D) 5分	利用(2)、(3)雨式,得出 $\tan \phi = \frac{v_y'}{v_x'} = \frac{v_y + \frac{j_y}{m}}{v_x}$	2	
	說明利用(9)式之結果	1	
	將(9)式之結果代入上式,化簡得出	2	
	$\tan \phi = \frac{V_x}{V_y} \left[\frac{1 + \frac{h^2}{k^2}}{1 + \frac{h}{R} \left(2 - \frac{Rh}{k^2}\right)} \right].$		

第5題評分標準:

小題	內容	得分	備註
(A)(i) 3 分	列出 $V = \frac{\sigma_2}{\varepsilon_0}d = \frac{\sigma_1}{\varepsilon_0}\frac{d}{8} + \frac{\sigma_1}{\varepsilon_0}\frac{3d}{8}$,並得出 $\sigma_1 = 2\sigma_2$	2	
3 71	列出 $V = \frac{\sigma_2}{\varepsilon_0} d = \frac{\sigma_1}{\varepsilon_0} \frac{\alpha}{8} + \frac{\sigma_1}{\varepsilon_0} \frac{3\alpha}{8}$,並得出 $\sigma_1 = 2\sigma_2$ 得出 $C = \frac{7\pi\alpha^2\varepsilon_0}{4d}$	1	
(A)(ii) 2分	列出 $\frac{q}{c} + Ri = 0$ 。	1	
	得出故 $q(t) = Q_0 e^{-t/RC}$	1	
(A)(iii) 4 分	$\sigma_1(t) = \frac{8Q_0}{7\pi a^2} e^{-t/RC} \cdot \sigma_2(t) = \frac{4Q_0}{7\pi a^2} e^{-t/RC}$	1	
	說明半徑在r與α間圓環之電荷增加率 = 流入此區間的電流 = 2πrj	1	
	得出 $a/2 < r < a$, $j = -(1 - \frac{r^2}{a^2}) \frac{4Q_0}{7\pi rRC} e^{-t/RC}$	1	
	得出 $0 < r < \frac{a}{2}$, $j = -(1 - \frac{4r^2}{7a^2}) \frac{Q_0}{2\pi rRC} e^{-t/RC}$	1	
(A)(iv) 6 分	得出 $0 < r < \frac{a}{2}$, $\vec{B} = -\frac{2\mu_0 r}{7\pi a^2 RC} \frac{Q_0}{RC} e^{-\frac{t}{RC}} \hat{\phi}$	2	
	得出 $\frac{a}{2}$ < r < a , \vec{B} = $-\frac{\mu_0(8r^2-a^2)}{14\pi r a^2} \frac{Q_0}{RC} e^{-\frac{t}{RC}} \hat{\phi}$	2	
	求出總流出電磁能為 $\frac{2dQ_0^2}{7\pi\epsilon_0a^2}$	2	
(B)(i) 7 分	列出 $\frac{q_1}{c} - \frac{L}{2}\frac{di}{dt} - \frac{q_2}{c} - \frac{L}{2}\frac{di}{dt} = 0$	2	
	列出 $\frac{dq_1}{dt} = -i = -\frac{dq_2}{dt}$	1	
	積分得出 $q_2(t) = \frac{Q_0}{2}(1 - \cos \omega t)$,	2	
	$q_1(t) = \frac{Q_0}{2}(1 + \cos \omega t).$		
	求出轉移到右電容器所需之最小時間 $\frac{a\pi}{c}\sqrt{\frac{\pi b}{2d}}$ 。	2	
(B)(ii) 3 分	求出感應電場 $\vec{E} = -\frac{\mu_0 Q_0}{2bLC\omega}\cos\omega t r\hat{\phi}$	1	
	求出磁場 $\vec{B} = -\frac{\mu_0 Q_0}{bLC\omega} \sin \omega t \hat{z}$	1	
	求出流入圓柱中空腔之電磁能最大值 $\frac{(dc^2\mu_0Q_0)^2}{2\pi\omega^2a^2b^3}$	1	

第6題評分標準:

小題	內容	得分	備註
(A) 5分	寫出系統能量 $E = \frac{1}{2}L_1I_1^2 + MI_1I_2 + \frac{1}{2}L_2I_2^2$	2	
	由 $E \ge 0$ 得出 $M \le \sqrt{L_1 L_2}$ 或 $k \le 1$	3	
(B) 7分	寫出主迴路 Kirchoff 電壓定律 $V_1 = I_1 Z_1 - M \frac{dI_2}{dt} = I_1 Z_1 - j\omega MI_2$	2	
	寫出次主迴路 Kirchoff 電壓定律	2	
	$I_{2}Z_{2} - M\frac{dI_{1}}{dt} = I_{2}Z_{2} - j\omega MI_{1} = 0$		
	得出 $I_2 = \frac{j\omega M}{Z_2} I_1 = \frac{j\omega M}{R_L + R_2} I_1$	1	
	求出負載功率 $P_{L} = \frac{\omega^{2} M^{2} R_{L}}{\left(R_{L} + R_{2}\right)^{2}} I_{1}^{2}$	2	
(C) 5分	寫出 $P_{\rm in} = I_1^2 \left[(R_1 + R_{\rm s}) + \frac{\omega^2 M^2}{R_{\rm L} + R_2} \right]$	2	
	得出 $\eta = \frac{\omega^2 M^2 R_L}{\omega^2 M^2 (R_L + R_2) + (R_S + R_1) (R_L + R_2)^2}$	3	
(D) 8分	列出極值條件 $\omega^2 M^2 R_2 + (R_S + R_1)(R_L + R_2)^2 - 2R_L(R_S + R_1)(R_L + R_2) = 0$	2	
	引入 $\beta = R_L/R_2$,化簡上式得出 $(\beta+1)^2 - 2(\beta+1) - 1/\alpha = 0$	2	
	求出 $\beta = \sqrt{1+1/\alpha}$	2	
	求出 η 的極值 $\eta_{\text{max}} = (1+2\alpha)-2\sqrt{\alpha(1+\alpha)}/(8r)$	2	
L		1	L