2019年第20屆亞洲物理奧林匹亞競賽及第50屆國際物理奧林匹亞競賽

國家代表隊初選考試

理論試題

2018年11月10日

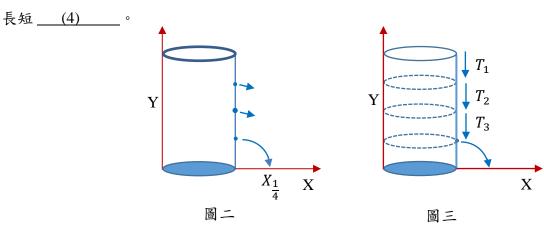
13:30~16:30

考試時間:三小時

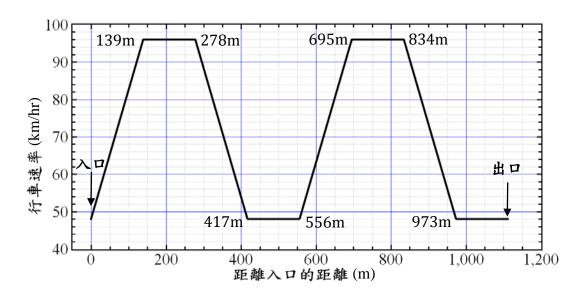
〈〈注意事項〉〉

- 1、本試題包括填充題三十格及計算題兩大題,合計總分為150分。
- 2、填充題部分,請直接將答案填入指定之答案格內,未 填入指定之位置者不予計分。
- 3、計算題部分,請在答案卷指定之位置作答。
- 4、可使用掌上型計算器(含科學工程式計算機)。
- 5、限以藍色或黑色原子筆作答。

2019 年第 20 屆亞洲物理奧林匹亞競賽 及第 50 屆國際物理奧林匹亞競賽 國家代表隊初選考試試題


※本試題含填充題和計算題兩部分,總分為150分,考試時間三小時。
壹、填充題(每格4分,共30格,合計120分)

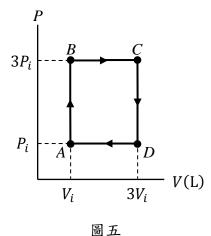
一、艦載戰鬥機如何能在長度有限的航空母艦甲板上起飛呢?除了艦載機自身動力及航空母艦以高航速逆風航行而產生的相對逆風外,如圖一所示的彈射器也是新型航空母艦的必要裝備。由於彈射器的輔助,戰鬥機在跑道前衝時,可在 45.0 m 的距離內由靜止達到時速 252 km(相對於航空母艦)而起飛。若將此彈射過程視為等加速度運動,則整個過程歷時 (1) s,其加速度為 (2) m/s²。


圖 —

二、在一個未加蓋的圓柱形水桶內裝滿水,桶的高度及截面積分別為 H 及 A。今在水桶側面不同高度處分別鑽了三個小孔,設小孔截面積均為 a,且a 《 A 。若各孔分別在距離水面 $\frac{1}{4}H$, $\frac{1}{2}H$ 及 $\frac{3}{4}H$ 的高度(水桶在穩定的水流射出過程中持續維持滿水位)。設從三小孔射出之水柱,分別掉落到平面上距離桶側 $X_{\frac{1}{4}}$, $X_{\frac{1}{2}}$, $X_{\frac{3}{4}}$ 處,如圖二所示。求出此三個距離之比,即 $X_{\frac{1}{4}}$: $X_{\frac{1}{2}}$: $X_{\frac{3}{4}}$ = _____(3) ____。若是將上面兩小孔封住,且從滿水位開始,水從小孔射出,如圖三所示,此後不再補充水量,使得水面隨時間下降,每降低 $\frac{1}{4}H$ 高度所需要的時間依序為 T_1 , T_2 及 T_3 ,試比較此三段時間之

三、新北市警局在「萬里隧道」實施隧道內"平均速率"科技執法,透過隧道入口和出口架設的偵測器,對於隧道內平均速率超過70.00 km/h 的車輛嚴格取締,僅一個月就有超過2500輛次因超速違規被取締。已知「萬里隧道」全長1112 m,則車輛行經隧道至少需時 (5) s(數值需精確至小數點第二位),才不會被取締?已知某車在「萬里隧道」內每各位置的速率,其結果如圖四所示,此車每經過139.0 m就變換一次行車方式,可是該車並沒有因為超速而被取締,因為該車通過隧道費共費時 (6) s。(數值需精確至小數點第二位)

註:積分公式 $\int \frac{dx}{x} = \ln(|x|)$


圖四

四、高空氣球搭載各式偵測器為研究氣象及大氣化學時常用的探測方法,其中一些技術可用理想氣體來探討。設有一球形氣球處在大氣壓 1.0 atm、溫度為 15°C、空氣密度為 1.22 kg/m³的環境。 (a)考慮氣球半徑為 3.5 m,現將氣球內充滿氦氣 (分子4.0 g/mol),扣除氣體重量後,求此氣球可以承載的重量為何 (7) ? (b)現改採熱氣球設計,設氣球內熱空氣分子有效質量為 29 g/mol, 溫度為 77°C, 若欲使此熱氣球具有與小題(a)氦氣球相同的承載重量,則此熱氣球的半徑為

____(8) ___m。(氣體常數= 8.3 J/mole·K,有效數字取至兩位)

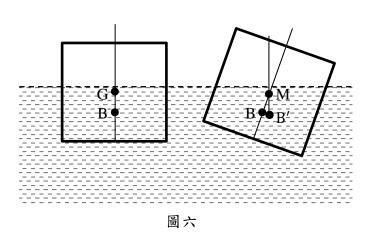
五、國際一級方程式賽車(F1)的賽車手,為了可以穩定高速過彎(速率可達 300 km/h)與 煞車,平時需要進行高度的體能訓練,才不會因承受很大的高速轉彎離心力與煞車 慣性反作用力,過度疲累而發生事故。假設某位 F1 賽車手,開著約 1700 kg 的法 拉利跑車,挑戰在澳洲墨爾本亞伯公園的比賽,其輪胎之靜摩擦係數 $\mu=1.3$ 。另一位參賽車手,開著 1600 kg 的賓士跑車,其輪胎之靜摩擦係數 $\mu=1.4$ 。假設賽道的某個彎道的道路傾斜角度為 30° ,且彎道的曲率半徑 r=50m,則這兩位賽車手,

在彎道上的最高速率何者較快 ____(9) ___? 較快者之最高速率為 _____(10) ___km/h。(假設車子轉彎時不滑動。)

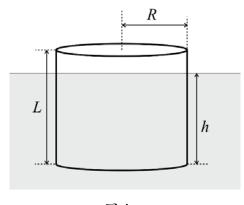
七、棒球場上,豪邁的揮棒和擊出全壘打是最振奮人心的時刻。在某一次投打對決時,投手投出速率 v_1 的快速直球被打者以 v_2 的揮擊速率打中。棒球的質量為m,半徑為r,球棒的質量為M。假設打者擊中球的前後,球和球棒在同一直線上運動,兩者接觸的時間是 Δt ,接觸面(平面)的最大面積和球的截面積之比值是A(A << 1)。若不考慮轉動,且擊球過程為彈性碰撞,則球的最大壓縮量和球半徑的比值是

___(13)___, 球的平均受力為 ___(14)___。

提示:A << 1 時, $\sqrt{(1-A)} \sim \left(1-\frac{A}{2}\right)$

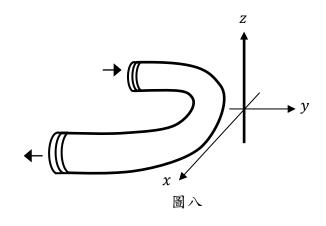

八、地球質量約為 6.0×10^{24} kg,半徑約為 6.4×10^6 m。(a) 將地球視為一密度均勻的實心球體,考慮地球在質量不變的情形下,均勻地向球心塌縮。當地球的半徑小於 R_c 時,在赤道處地球表面自轉的線速率會大於光速,則 $R_c=_{}(15)$ m。(b)若地球上的水之總質量約為 1.4×10^{21} kg。假設水均勻地覆蓋在地球表面上,且與地球以相同的角速度轉動,地球的其它部分可視為一密度均勻之實心球。如果地表的水全部蒸發,則地球自轉的週期變化為 $_{}(16)$ %?(+表示增加,-表示減少。)

註:實心球與薄球殼相對於其球心的轉動慣量分為 $\frac{2}{5}MR^2$ 及 $\frac{2}{3}MR^2$ 。

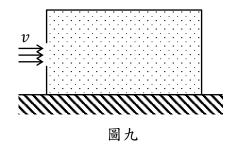

九、 太陽輻射對地表溫度的影響。(a) 地球因雲與表面冰層,大約僅吸收 70.0%的太陽輻射。假設地表溫度在一定期間內可視為穩定,且地球可是為為一黑體,試估計地表溫度 _____(17) ____ K。(註:此溫度為外星人從遠處觀察到的地球溫度,史蒂芬常數 σ = 5.67×10⁻⁸ W/m² K⁴;太陽常數(solar constant) S = 1370 W/m²。)(b) 接著考慮溫室氣體的效應。來自太陽的輻射絕大部分的能量分布在可見光及頻率更高

的波段;而地表輻射則主要為紅外線。假設地表的溫室氣體完全不吸收太陽輻射,但可完全吸收來自地表的紅外線輻射。試估算地表溫度 (18) K。 (c)若上述的溫室氣體僅吸收 80.0%的地表輻射,再次估算地表溫度 (19) K。 註:由 NOAA 全球氣候報告中顯示,2017 全年地球表面 (陸地加海洋)的平均溫度實際為 287.7 K。

- 十、科學家解釋土星環的形成,主要是因為其衛星太靠近土星之故。當行星與衛星的距離小於 " d_{RL} "時,行星施於該衛星的"潮汐力 (tidal force)" (即行星施於衛星近端與遠端的引力差值),會大於衛星表面自身產生的重力,因此衛星會被撕裂。 d_{RL} 稱為Roche 極限,由法國天文學家 Edouard Roche 首先提出。現考慮一密度為 ρ_{m} ,半徑為r,質量為m的固體球狀衛星,以半徑為d的圓形軌道繞行一密度為 ρ_{p} ,半徑為R,質量為m的球狀行星。已知一質量為n的物體在該衛星表面所受的潮汐力為n0分為 n0分分為 n0分分,試計算此一系統的n0分分。 已知土星的某一衛星由水冰(water ice)構成(密度為n0分),土星的質量和半徑分別為n0分),上星的質量和半徑分別為n0分), n1分), n20分), n300 以 n3 以上題所得的關係式,計算土星-衛星的 Roche 極限 n1分)。 n300 以 n4 以 n5 以 n6 以 n7 以 n8 以 n9 以 n9
- 十一、船隻的設計須考量其浮於水面時,是否能在受到微擾時仍可維持穩定而不致傾倒。 圖六為一個處於靜力平衡狀態的浮體,G為浮體重心,B為浮力中心(即水面下的體 積的中心)。圖六右為該浮體受到微擾向右傾斜的模樣,此時浮體處於力平衡狀態, 但不處於力矩平衡狀態;B'為傾斜時的浮力中心,M為通過B'的鉛垂線與BG直線的 交點。

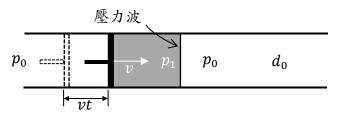


(b)如圖七所示,考慮一個高度為L,半徑為R、比重為S (S < 1) 的均勻圓柱體,鉛直浮於水面。已知對垂直的圓柱體而言, \overline{BM} = $\frac{R^2}{4h}$,其中h為圓柱體沒入水中的深度。若 $L=10.0~\mathrm{cm}$, $R=6.00~\mathrm{cm}$,且此圓柱體處於穩定平衡,則S須滿足的條件為 (23)。


圖七

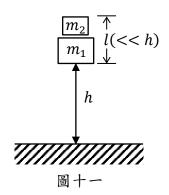
十二、 如圖八所示,將一段長度為L、內 有穩定水流之水管在xy平面上做 180 度彎曲轉向,若水流在水管入口處之 壓力為p、流速為v、截面積為A,在 水流出口的截面積增加為2A,且水流 流入與流出此段水管時分別為沿著 +y與-y方向。設水的密度為p,若要 使此段水管在在水流通過時保持固 定不動,則在x與y方向所需施加的力 分 別 為 (24) 及 (25)。

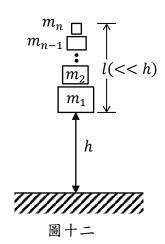
十三、 某司機想要運送砂子,他找來了一個質量為M、高度為H、內部截面積為A的 容器來裝砂子。容器底部的厚度可不計,而且此容器的重心位於離底部 H/2 的地方。假設砂子均勻的平鋪於容器內,並且運送時希望整個容器與砂子系統的重心可以越低越好。若已知重心達到最低時,容器內砂子的質量也恰好是M。若容器內砂子的高度為 αH ,求 $\alpha = \underline{\qquad (26) \qquad}$ 。


十四、 如圖九所示,將1莫耳、速度均為v的氮分 子東注入一個已有1莫耳氮分子、絕對溫度為 T(約在室溫左右)的絕熱容器中。氣體注入後將 容器封閉。假設分子東中氮分子之轉動動能可 忽略不計,且容器置放在一光滑水平面上,可

自由運動。設容器的體積為V,氮分子的分子量為M。(a)若容器質量遠大於氣體質量,則容器內氣體分子達熱平衡時的溫度為 (27) (b) 若相對於氣體質量,容器質量可不計 (如容器為一氣球),則容器內氣體分子達熱平衡時的溫度為

(28) (氣體常數為R)。


十五、 在大氣中有一個靜立於地面、截面積為A的水平長直圓管,其左端裝有一可自由移動的活塞,管內充滿可壓縮流體。假設大氣的絕對壓力 p_0 固定不變,而最初處於平衡態時(時間為0),管內流體的質量密度為 d_0 。以下考慮在時間從0到t的很短時段內,活塞由其平衡位置等速向右移動,因而在流體內造成壓力縱波(如圖十所示)。假設所有運動過程均無熱交換、亦無摩擦,活塞的速度為v,緊鄰活塞的流體因受到壓縮,以致壓力升高成為 p_1 ,且此壓力變化以波速c向右傳遞,在時間為t時到達被壓縮區(圖十所示陰影區)的右端。若在此陰影區之流體的質量密度為 d_1 ,則密度的比值 d_1/d_0 為 (29) ,而壓力差 p_1-p_0 為 (30)



圖十

計算題(每題15分,共二題,合計30分)

- 一、質量為 m_1 與 m_2 的兩物體在一直線上運動並發生正向彈性碰撞,設碰撞前瞬間兩物體的速度分別為 v_1 和 v_2 , 碰撞後速度為 u_1 和 u_2 。
 - (a) 求 $\frac{u_2-u_1}{v_2-v_1}$ ° (3 分)
 - (b) 現將 m_2 置於 m_1 上,兩物體離地面高度h,如圖十一所示。 設兩物體間距與長度遠小於 $h(l \ll h)$,可忽略不計。現考 慮 m_2 、 m_1 與地面均為彈性碰撞且 $m_1 \gg m_2$ 。求 m_2 與 m_1 發 生碰撞後反彈離地面之最高距離? (4 分)
 - (c) 假設n個物體堆疊如圖十二所示,其中 $m_1 \gg m_2 \gg \cdots \gg m_n$,物體間距與長度可忽略不計,求最上端 m_n 發生碰撞後反彈之速度? (5分)
 - (d) 現設h為 10 公尺,而 m_n 發生碰撞後反彈之速度 $u_n \ge 11.2 \text{ km/s}$,求最小 n = ?(3 %)

- 二、假設大氣的絕對壓力p₀固定不變。考慮在大氣中垂直靜立於地面的圓筒型汽缸,其底部封閉,頂部裝有重量為W、截面積為A、可上下自由移動(即與缸壁之間無摩擦力)的活塞,而汽缸內充有可視為理想氣體的氦氣。汽缸與活塞為完全絕熱之剛體,與外界或缸內氦氣均無熱交換。當氦氣最初處於熱力學平衡狀態時,活塞比汽缸底部高出H (如圖十三所示)。
- $W = \begin{bmatrix} p_0 \\ A \end{bmatrix}$

圖十三

- (a) 求初始時氦氣的內能 U_i 。(2分)
- (b) 今對活塞施加向下的定力F,使其從靜止開始加速下降,接 下來氦氣會因為受到壓縮而產生抗力。若在高度為H/2時活塞速度正好成為零, 且在此時立即固定活塞,使其不能移動,求在此瞬間氦氣的內能相較於原本內 能U_i的增加量ΔU。(4分)
- (c) 當活塞固定不動一段時間後,汽缸內的氦氣可再次達到熱力學平衡,求此時的壓力 (答案可用 $U_i \setminus \Delta U \setminus A \setminus H$ 及其他已知量表示)。(4分)
- (d) 接著,放開活塞使其可再自由移動,則氦氣會進行不可逆的脹縮過程,當它最後再度達到熱力學平衡時,活塞比汽缸底部高出αH,求α。(5分)

2019 年第 20 屆亞洲物理奧林匹亞競賽 及第 50 屆國際物理奧林匹亞競賽 國家代表隊初選考試試題參考解答

壹、填充題(每格4分,共30格,合計120分)

$$- \cdot (1) 1.29 \text{ s}$$

$$(2) 54.4 \text{ m/s}^2$$

$$=$$
 \(\(\sigma\)\)\(\square{3}:2:\square{3}\)

(4)
$$T_3 > T_2 > T_1$$

$$\leq$$
 (5) 57.19

$$(14) \quad \frac{2mM}{(m+M)(\Delta t)}(v_1+v_2)$$

$$(16)$$
 -3.9×10^{-2}

+ \
$$(20) d_{RL} = R (2\rho_p/\rho_m)^{1/3}$$

$$(21)$$
 $d_{RL} = 66300 \text{ km}$

$$(25) - 3pA - 5\rho v^2 A/4$$

$$+ \equiv (26) \ 1/3$$

十四、 (27)
$$T/2 + Mv^2/(10R)$$

(28)
$$T/2 + Mv^2/(20R)$$

$$+ £ \cdot (29) \frac{c}{c-v}$$

$$(30) \frac{\overline{v(c-v)}d_1}{v(c-v)}$$

計算題 (每題 15 分,共二題,合計 30 分)

第1題評分標準:

小題	内容	得分	備註
(a) 3 分	列出動量守恆: $m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$	1	
	列出能量守恆: $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2v_2^2$	1	
	算出 $\frac{u_2-u_1}{v_2-v_1}=-1$.	1	
(b) 4分	算出 m ₁ 與地面彈性碰撞後的速度為 v	1	
	算出 m2與 m1彈性碰撞後的速度為 3v	2	
	算出 m_2 向上的最高距離 $S=9h$	1	
(c) 5分	列出方程式: $u_{i+1} - u_i = -(v_{i+1} - v_i)$	1	
	化簡方程式得到: $u_{i+1} = 2u_i + v$	2	
	算出 <i>u_n</i> =(2 ⁿ -1) <i>v</i>	2	
(d) 3 分	算出數值 $v = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 10} = 14 \text{ m/s}$	1	
	得出 n=10	2	

第2題評分標準:

小題	内容	得分	備註
(a) 2 分	氣體壓力 $p = (p_0 A + W)$ 或 $U_i = \frac{3}{2} NkT$ 。	1	
	得到 $U_{\rm i} = \frac{3}{2}(p_0 A + W)H$	1	
(b) 4 分	算出外力所作之功: $(F + p_0 A)H/2$	1	
	算出活塞力學能的變化量-WH/2_	1	
	列出熱力學第一定律:	1	
	$\Delta U - WH/2 = (F + p_0 A)H/2.$	1	
	求出 $\Delta U = (F + p_0 A + W)H/2$	1	
(c) 4 分	由熱力學第一定律得出: $\frac{3}{2}pA\left(\frac{H}{2}\right) = U_i + \Delta U$	2	
	算出 $p = \frac{4}{3} \left(\frac{U_{i} + \Delta U}{AH} \right)$	2	
(d) 5 分	得出系統最後再度達到熱力學平衡時的內能: $U_{\mathrm{f}} = \frac{3}{2} \left(p_{0} + \frac{W}{A} \right) \alpha HA.$	1	
	得出活塞重力位能的變化量: $W(\alpha H - \frac{H}{2})$	1	
	由熱力學第一定律得出: $W\left(\alpha H - \frac{H}{2}\right) + \frac{3}{2}\left(p_0 + \frac{W}{4}\right)\alpha HA - \frac{3}{2}\left(p_0 + \frac{W}{4}\right)HA - \frac{3}{2}$	2	
	$(F + p_0 A + W) \frac{H}{2} = -(p_0 A) \left(\alpha H - \frac{H}{2}\right).$		
	得出 $\alpha = 1 + \frac{F}{5(p_0 A + W)}$.	1	