2020年第21 屆亞洲物理奧林匹亞競賽及第51 屆國際物理奧林匹亞競賽

國家代表隊初選考試

理論試題

2019年11月2日

13:30~16:30

考試時間:三小時

〈〈注意事項〉〉

- 1、本試題包括填充題三十格及計算題兩大題,合計總分為 150 分。
- 2、填充題部分,請直接將答案填入指定之答案格內,未 填入指定之位置者不予計分。
- 3、計算題部分,請在答案卷指定之位置作答。
- 4、可使用掌上型計算器(含科學工程式計算機)。
- 5、限以藍色或黑色原子筆作答。

2020 年第 21 屆亞洲物理奧林匹亞競賽 及第 51 屆國際物理奧林匹亞競賽 國家代表隊初選考試試題

※本試題含填充題和計算題兩部分,總分為150分,考試時間三小時。

壹、填充題(每格4分,共30格,合計120分)

一、垂直上拋一質量為 1.0 公斤之橡皮球,在運動過程中,橡皮球遭遇到空氣阻力f,且f 與橡皮球之速度v的量值成正比,其函數關係為 $f = -\alpha v$, α 為阻力係數且 $\alpha > 0$ 。已知橡皮球自拋出後之速度與時間關係如下數據圖所示。設重力加速度為 10 m/s^2 ;則阻力係數 $\alpha = \underline{\quad (1) \quad kg/s}$ 。在拋出後的第七秒,橡皮球是在哪一個位置? (a)原拋出位置上方;(b)原拋出位置;(c)原拋出位置下方。答案: $\underline{\quad (2) \quad }$ 。

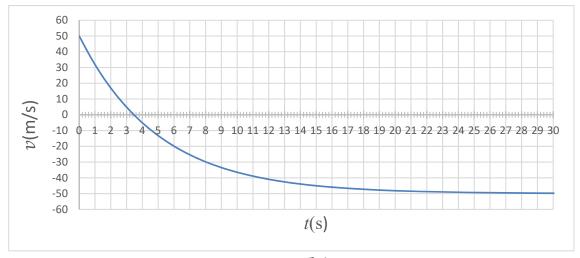


圖 1

二、一直徑為3.0 mm雨滴,從距離地面1200 m高處往下掉落。假設雨滴掉落時為球狀, 已知水的密度為1000 kg/m³、空氣密度為1.2 kg/m³,且球形雨滴在空氣中的拖曳 係數為0.60;則雨滴的終端速度為 (3) m/s。

註:拖曳力的公式為 $D=\frac{1}{2}C\rho Av^2$ 。其中,D為拖曳力,C為拖曳係數, ρ 為空氣密度,A為有效截面積,v為速度。

三、台鐵某列車以90 km/h的等速率轉彎進入直線軌道當時,司機吃驚地發現前方600 m處有一個貨櫃火車頭,恰巧也從旁側軌道併入同一軌道,且正以36 km/h作等速度移動,兩車同向行駛;如圖 2 所示。列車司機見狀在 2 秒後踩下煞車。接下來台鐵列車以等減速度運動,且速率在60秒後降至30 km/h,問此時客車跟貨櫃火車頭的距離為 (4) m。

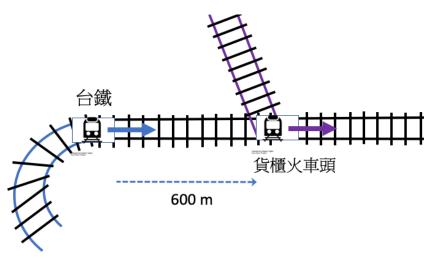
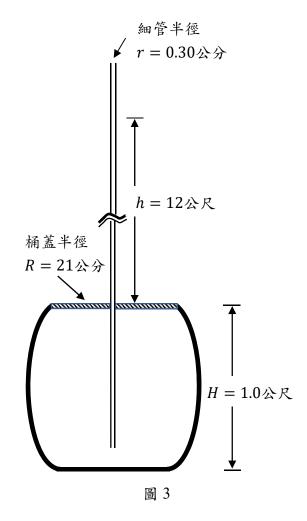
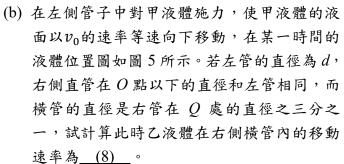




圖 2 台鐵司機看見貨櫃火車頭跟它進入相同軌道示意圖

四、在很多有關液體靜力學的實驗中,有一項著名的實驗稱為「帕斯卡木桶實驗」。實驗示意圖如圖 3 所示,在一半徑 R為21公分、高H為1.0公尺且充滿水的木桶中,垂直插入一支內半徑 r為0.30公分的細管,在細管中慢慢加水,當細管中的水柱恰好比桶面高 12公尺時,木桶上蓋會爆開。問木桶上蓋在正要爆開前所受力的 F = (5) ;木桶上蓋所受的力與加入細管中水的重量之比值 $\beta = (6)$ 。設重力加速度為10 m/s²。

- 五、一個連通管實驗裝置內裝有有甲、乙兩種不可 壓縮,也不互溶的液體,密度分別為ρ_Ψ、ρ_Z。
 - (a) 在靜止時兩種液體的液面位置如圖 4 所示, 左管液面高度為 z, 且左、右兩管的液面高度 差為h, 試求h = (7) (以ρ_Ψ、ρ_Z、z表 示之。)

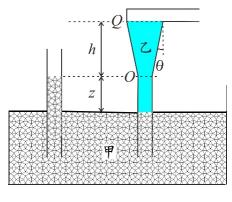


圖 4

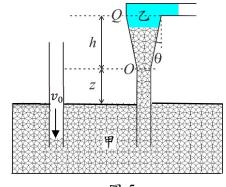
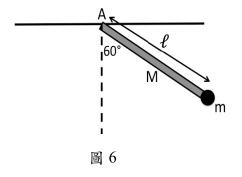



圖 5

六、有一長為化、質量為M的均勻鐵桿,一端固定於 A 點,而且鐵桿以 A 點為支點,在鉛直面上轉動。鐵桿另一端上附有一質量為m、體積可不計的小球,鐵桿初始位置與鉛錘線夾60°,如圖 6 所示。因重力作用系統繞 A 點擺動,當小球擺至最低點時,小球速率為 (9) m/s; A 點在鉛直方向受力的量值為 (10) N。

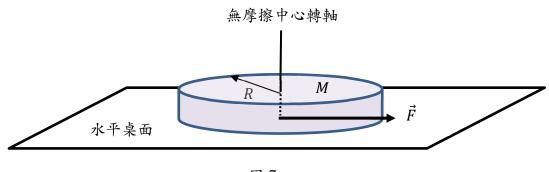
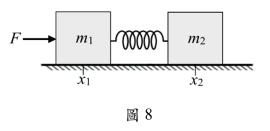
註: 均勻鐵桿繞其質心轉動之轉動慣量為 $M\ell^2/12$, 繞其端點轉動之轉動慣量為 $M\ell^2/3$ 。

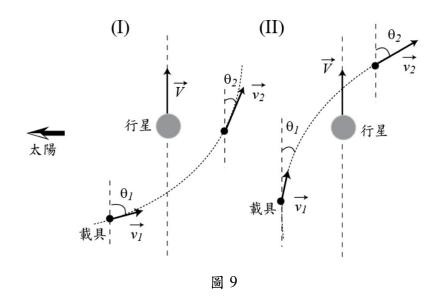
- 七、在絕熱容器中之理想氣體,其初始壓力為 P_0 、體積為 V_0 ,先經過一自由膨脹過程,使得體積增加為 $3V_0$,然後再緩緩的進行絕熱壓縮至原來體積 V_0 ;這時壓力為 $3^{1/3}$ P_0 。(a)上述第一階段自由膨脹過程,體積增加為 $3V_0$ 時,氣體溫度為初始溫度的 (11) 倍。
 - (b)若是由初始狀態經歷一個等熵過程後,使得理想氣體體積由 V_0 增加到 $5V_0$,則此時氣體的溫度是起初始溫度的(12) 倍。
- 八、 一人造衛星以圓形軌道繞行地球,經過一段長時間後,因有些許空氣阻力造成該衛

星的總機械能減少了1焦耳;則該衛星的動能變化量為<u>(13)</u>焦耳。(用"+"值表示增加、"-"值代表減少)

- 九、一質量為m的質點,置於一半徑為R、面密度為 σ 的半球殼球心位置;則該球殼作用於此質點的萬有引力為(14);以重力常數G,m和 σ 表示之。
- 十、在一水平桌面上有一個質量為M、半徑為R的圓盤,圓盤繞著一個中心無摩擦的轉軸轉動,如圖 7 所示。沿著圓盤邊緣切線水平方向有一力序作用, $|\vec{F}| = F = 常數$ 。已知圓盤繞中心軸的轉動慣量為 $\frac{1}{2}MR^2$,則(a)當桌面與圓盤間無摩擦時,圓盤轉動的角加速度為 (15) ,(b)若圓盤與桌面間的摩擦係數為 μ ,則F必須大於 (16) ,圓盤才能夠發生轉動。

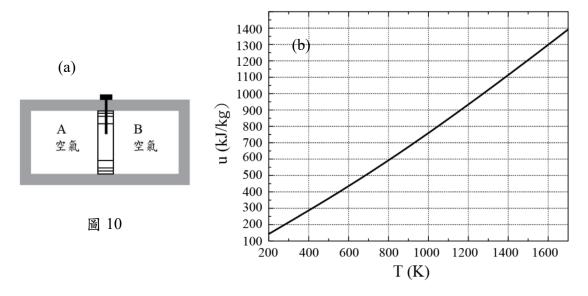
積分公式:
$$\int x^n dx = \frac{x^{n+1}}{(n+1)} , n \ge 1$$

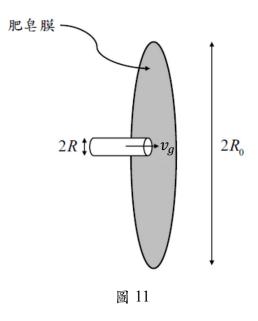




圖 7

十一、 兩質量分別為m₁、m₂的立方體,置於光滑的水平桌面上;兩立方體間以輕質彈簧連接,彈簧彈性常數為k。今以水平向右之常力F施於立方體m₁上,施力持續一段時間後,讓兩立方體由初始位置x₁、x₂各自產生Δx₁、Δx₂的位移之後;便移除此力(運動過程中不牽涉轉動)。

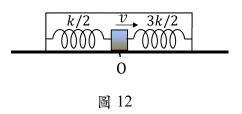
產生 Δx_1 、 Δx_2 的位移所施力時間為<u>(17)</u>。移除施力後此系統(連接彈簧的雨立方體系統)之質心動能為<u>(18)</u>。


十二、 重力輔助(Gravity Assists)是指利用行星與太空載具之間的重力與相對運動,改變太空載具的速度與軌道。假設太陽質量為 M_0 ,行星為質量 M_1 與太空載具質量為m,其中 $m \ll M_1 \ll M_0$;且三者在同一水平面上運動。當行星以速度 \vec{V} 繞日運動,圖 9 顯示出 I 與 II 兩種可能的太空載具運動軌跡;且在行星座標系統下,遠離之太空載具以 $\vec{\upsilon}_1$ 接近行星,其後以 $\vec{\upsilon}_2$ 遠離行星。

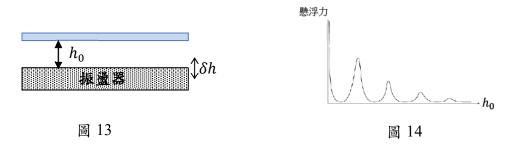

- (a) 在行星座標系統下,太空載具行經行星的動能變化為____(19)_;
- (b) 現在考慮在太陽座標系統下,太空載具的動能變化為<u>(20)</u> (答案以m, θ_1 , θ_2 , \vec{V} , \vec{v}_1 表示);
- (c) 太空載具行經行星時與行星的重力的交互作用可視為完全彈性碰撞過程。若 $\theta_1 = 180^\circ$, $\theta_2 = 0^\circ$,則太空載具行經行星後的所獲的速度為 (21) 。

十三、 考慮一個與外界絕熱的氣體容器,如圖 10(a)所示。其內部以一片導熱隔板分成 A、 B 兩個氣室。初始時隔板以插銷固定住,兩氣室體積均為 1 m^2 ;氣室 A 內之空氣壓力為300 kPa,溫度400 K;氣室 B 內之空氣1.5 MPa,溫度1400 K。空氣單位質量內能u(kJ/kg)與溫度T(K)的關係可參考圖 10(b)。現將插銷移除,隔板可以無摩擦自由運動,且空氣可以視為理想氣體;當達到熱力學平衡時容器內的溫度 T = (22) K 與壓力P = (23) kPa。

註:通用氣體常數為 R=8.314 J/K mol, 1 莫耳(1 mole)空氣質量為 0.02897 kg。

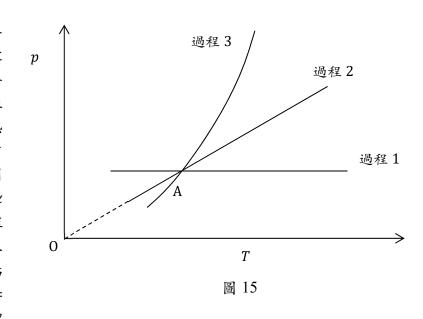


十四、 半徑 R_0 的線圈上有厚度為d的肥皂膜,肥皂膜的質量密度為 ρ_s ,表面張力係數為 γ 。另有一支吹肥皂泡用的吹氣管,吹氣管的半徑為 $R(R \ll R_0)$,且吹氣管口貼近肥皂膜(距離遠小於R),空氣的質量密度為 ρ_g ,管中空氣的速度為 ν_g ,如圖 11 所示。實驗上已知 $\nu_g \geq \nu_c$ 時才能成功的吹出肥皂泡;而當 $\nu_g = \nu_c$ 時,肥皂膜上恰形成曲率半徑為R的彎曲面,若此時肥皂膜受到吹氣管所施加的壓力差為 P_c ,則 $P_c = (24)$,以 R_0 、d、 ρ_s 、 γ 表示之。 若 $\nu_c = A_0 \gamma^a \rho_a^b R^c$, A_0 為比例常數,求


十五、 如圖 12 所示,一個置於光滑水平面上之靜止金屬箱中,有一小木塊以彈性常數各為k/2 與3k/2之理想彈簧與金屬箱兩邊相連,小木塊原先處於平衡點,即箱內O點;然而在t = 0時,小木塊以初速V開始向右運動。假設小木塊與金屬箱間也是光滑可不計摩擦,小木塊體積可忽

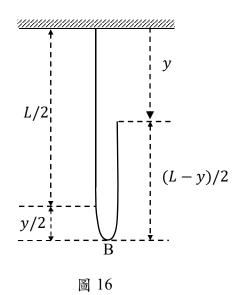
 $a \cdot b \cdot c = \underline{\qquad (25)}$

略不計但質量為m,又金屬箱的質量為8m,則小木塊在金屬箱內進行振盪運動第5次經過O點時(起始點不計),金屬箱移動的距離為___(26)___。


十六、 以聲波操控物體是一個新穎的無接觸式超控技術,其中聲波懸浮物體是聲波操控物體的基礎技術。一平版型物體可懸浮在產生平面聲波的振盪器上,假設懸浮之平板形物體不吸收聲波,則兩者間空氣膜的厚度為 $h(t)=h_0+\delta h\sin\omega t$,其中 h_0 為平板與振盪器的平均間距, δh 為振盪器上下振動的振幅,振盪器的振盪角頻率為 ω ,如圖 13 所示。

- (a)實驗上發現平板形物體所受之懸浮力,在某些特定距離 h_0 達到極值,如圖 14 所示。假設聲波速度為c,則兩連續懸浮力最大值的間距為 (27) 。
- (b)若振盪器產生聲波的波長甚大於 h_0 ,中間空氣膜可以以理想氣體絕熱過程描述;

即 PV^{γ} =常數,其中P為壓力,V為體積, $\gamma \approx 1.4$;且造成平板物體懸浮的壓力 平均值可以表示為 $A\rho^{x}c^{y}\omega^{z}(\delta h)^{a}h^{b}$,其中A為常數, ρ 為氣體的密度;則 $x \cdot y \cdot z \cdot a$ 與b之值為 (28)


十七、 考慮 1 莫耳的 2 要 2 要 2 要 2 要 2 要 2 要 2 要 2 是 2 要 2 是

常數。若 $C_3 = -2R$,則在過程 3 中,p必須與T的__(30)__次方成正比。

計算題 (每題 15 分,共二題,合計 30 分)

一、考慮一條垂直懸吊、總長為L、線密度為µ的 鏈子,將其左端固定,右端舉高。此鏈子底 部彎曲部分很短,以致其長度與質量均可忽 略。令重力加速度為g,並將+y軸取為垂直 向下,則當鍊子右端頂點的座標為y時,左右 兩段的長度可近似如圖 16 所示。此鏈子石 初靜止懸吊時,左右兩段可視為平行,且兩 段頂端高度相等(y=0)。今使鏈子右頂端從 靜止開始自由下落,在圖示的狀態時,右段 部分各點的下落速度為v,而左段部分為靜 止,左段的底端在圖中以 B 點標示,在此點 的張力量值為T₁。

(a) 若取y = 0為重力位能的零點,則在圖 16 所

示狀態時,求整條鏈子的總力學能E,答案以 $y \cdot v \cdot L \cdot \mu$ 與g表示。(3分)

- (b) 若整條鏈子的總力學能守恆,求υ,答案以L、μ、g與y表示。(3分)
- (c) 承(b)小題,求整條鏈子的質心速度V,答案以L、 μ 、g與y表示。(3分)
- (d) 在圖 16 所示狀態時,若將鏈子右邊下落部分的運動方程式表示為

$$\frac{d}{dt} \left\{ \frac{1}{2} \mu(L - y) v \right\} = F$$

求F,答案以L、 μ 、g與 T_1 表示。(3分)

(e) 若整條鏈子的總力學能守恆,求T₁與υ,μ的關係。(3分)

二、二横截面分別為S和2S的圓柱形容器以如圖17所示的連接方式,形成一汽缸。每個圓柱中各置有一活塞,二活塞相距ℓ,並以一硬桿相連,構成一"工"字形活塞,將整個汽缸分隔成三個氣室。

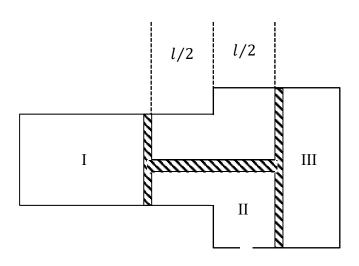


圖 17 汽缸組成示意圖

其中氣室I和氣室III為密閉並分別封有I及2莫耳的相同理想氣體(其莫耳比熱為C),且二氣室內裝有電熱器,以供加熱之用。氣室II的汽缸壁上開有一小孔,與大氣相通。當三個氣室中氣體溫度均為 T_1 時,"工"字形活塞恰處於如圖示的平衡位置,此時氣室I內的氣體柱長亦為 ℓ ,氣室II內有1.5 莫耳的空氣。假設大氣壓不變,汽缸壁和活塞均為絕熱,不計活塞與汽缸間之摩擦力,且活塞移動範圍不超過氣室II之通氣孔。現將氣室I和氣室III中的氣體以加熱器緩慢加熱,直到氣室I中氣體溫度升高至 $2T_1$,此時活塞左移一距離d,則

- (a) 初始狀態時,氣室Ⅲ中的氣柱長度為何?(以ℓ表示。) (5分)
- (b) 在末狀態時,氣室III中氣體溫度為何? $(以T_1 \lor \ell \lor d表示 \circ)$ (5分)
- (c) 在此過程中,氣室 I 和氣室III中之氣體吸收的總熱量為何 $?(以T_1 \lor \ell \lor d \lor C$ 和氣體常數R表示。) (5分)

2020 年第 21 屆亞洲物理奧林匹亞競賽 及第 51 屆國際物理奧林匹亞競賽 國家代表隊初選考試參考解答

壹、填充題(每格4分,共30格,合計120分)

- `

(1)
$$\alpha = 0.2 \text{ kg/s}$$

二、

(3)
$$v = 7.4 \text{ m/s}$$

三、

四、

(5)
$$F = 1.7 \times 10^4$$
 N

(6)
$$\beta = 4900$$

五、

$$h = \frac{\left(\rho_{\Psi} - \rho_{Z}\right)z}{\rho_{Z}}$$
(7)

$$v = \left[\frac{3\rho_{\mathcal{L}}d}{\rho_{\mathcal{L}}d + 2\left(\rho_{\Psi} - \rho_{\mathcal{L}}\right)z\tan\theta}\right]^{2}v_{0}$$
(8)

÷,

$$\sqrt{\frac{3(M+2m)}{2(M+3m)}}g\ell$$

$$\frac{3(M+2m)^2}{4(M+3m)}g + (M+m)g$$

七、

$$(11) \ \ \, T_f/T_0 = 1$$

$$(12) \quad T_f/T_0 = 5^{-1/3}$$

八、

九、

(14)
$$\underline{\pi Gm\sigma}$$

+,

$$\alpha = \frac{2F}{MR}$$
(15)____

$$F_c = \frac{2\mu Mg}{3}$$
(16)

+- \

(17)
$$t = \sqrt{\frac{2(m_1 \Delta x_1 + m_2 \Delta x_2)}{F}}$$

(18)
$$\frac{F(m_1 \Delta x_1 + m_2 \Delta x_2)}{m_1 + m_2}$$

十二、

(20)
$$m|\vec{V}||\vec{v}_1|(\cos\theta_1-\cos\theta_2)$$

十四、

$$(24) P_c = \frac{4\gamma}{R}$$

(25)
$$a, b, c = \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}$$

$$(26) \frac{10\pi v}{27} \sqrt{\frac{m}{k}}$$

$$(27) \underline{\frac{\pi c}{\omega}}$$

(28)
$$1 \cdot 2 \cdot 0 \cdot 2 \cdot -2$$

計算題 (每題 15 分,共二題,合計 30 分)

第1題評分標準:

小題	內容	得分	備註
(a)	求出整條鏈子的總重力位能:		
3分	$V = -\mu LgY = -\frac{\mu g}{4}(L^2 + 2Ly - y^2).$	1	
	求出整條鏈子的總動能: $K = \frac{\mu}{L}(L-y)v^2$.	1	
	求出總力學能: $E = \frac{\mu}{4}(L - y)v^2 - \frac{\mu g}{4}(L^2 + 2Ly - y^2)$ 。	1	
(b) 3分	列出力學能守恆式:	2	
	$E = -\frac{\mu g L^2}{4}.$		
	求出 $v = \sqrt{\frac{gy(2L-y)}{L-y}}$.	1	
(c) 3分	寫出質心速度與 v 的關係: $V = \dot{Y} = \frac{(L-y)}{2L}v$ 求出質心速度: $V = \frac{1}{2L}\sqrt{gy(L-y)(2L-y)}$	1	
(d) 3 分	正確寫出力: $F = \frac{1}{2}\mu(L-y)g - T_1 \circ$	3	
(e) 3分	寫出		
	$\frac{dE}{dt} = \left(-\frac{1}{4}\mu v\right)v^2 + \frac{1}{4}\mu(L-y)\left\{2v\frac{dv}{dt}\right\}$	1	
	$-\frac{1}{4}\mu g[v(2L-y)-yv]$		
	將(d)的結果帶入化簡得到:		
	$\frac{dE}{dt} = \left(\frac{1}{4}\mu v^2 - T_1\right)v.$	1	
	由力學能守恆得出: $T_1 = \frac{1}{4} \mu v^2$.	1	

第2題評分標準:

(a) 5 分 列出初始時氣室 1 、 11 、 111 中氣體滿足的理想氣體方程式: $p_1 lS = RT_1$ $p_0 \left(\frac{l}{2} \cdot S + \frac{l}{2} \cdot 2S\right) = \frac{3}{2}RT_1$ $p_1 l' \cdot 2S = 2RT_1$ 列出力學平衡條件: $p'_1 \cdot 2S = p_1 \cdot S + p_0 (2S - S)$ 得出: $l' = l$ 2 (b) 5 分 列出結束時氣室 1 、 111 中氣體滿足的理想氣體 2 之 2	小題	內容	得分	備註
$p_{1}IS = RT_{1}$ $p_{0}\left(\frac{1}{2} \cdot S + \frac{1}{2} \cdot 2S\right) = \frac{3}{2}RT_{1}$ $p'_{1}l' \cdot 2S = 2RT_{1}$ D		列出初始時氣室I、II、III 中氣體滿足的理		
$\begin{array}{c} D_0\left(\frac{l}{2}\cdot S+\frac{l}{2}\cdot 2S\right)=\frac{3}{2}RT_1\\ p_1'l'\cdot 2S=2RT_1\\ \hline N \oplus \Lambda^{\oplus} \mathbb{P} \iff P_1'\cdot 2S=p_1\cdot S+\\ p_0(2S-S)\\ \hline P \oplus H: l'=l \\ \hline \end{array}$ $\begin{array}{c} D \oplus N \oplus \mathbb{P} \iff P_1'\cdot 2S=p_1\cdot S+\\ p_0(2S-S)\\ \hline P \oplus N \oplus \mathbb{P} \iff $		想氣體方程式:		
$\begin{array}{c} p_0\left(\frac{l}{2}\cdot S+\frac{l}{2}\cdot 2S\right)=\frac{3}{2}RT_1\\ p_1'l'\cdot 2S=2RT_1\\ \hline\\ \text{列出力學平衡條件}:\ p_1'\cdot 2S=p_1\cdot S+\\ p_0(2S-S)\\ \hline\\ \text{得出}:l'=l\\ \hline\\ \text{②}\\ \end{array}$ $\begin{array}{c} \text{(b) 5 } \mathcal{G}\\ \hline\\ \text{例出結束時氣室I} \text{III} \text{中氣體滿足的理想氣}\\ \hline\\ \frac{m}{2}\mathcal{G} \text{程式}:\\ p_2(l-d)S=RT_2=2RT_1\\ p_2'(l+d)\cdot 2S=2RT_2'\\ \hline\\ \text{得出力學平衡條件}:\\ p_2'\cdot 2S=p_2\cdot S+p_0(2S-S).\\ \hline\\ \text{求出溫度}:\\ T_2'=\frac{(3l-d)(l+d)}{2l(l-d)}T_1.\\ \hline\\ \text{(c) 5 } \mathcal{G}\\ \hline\\ \text{求出失氣對密閉氣體系統所作的功}:\\ -W=-\frac{d}{l}RT_1\circ\\ \hline\\ \text{求出系統中密閉氣體的內能增加量}:\\ \Delta U=\left[\frac{(3l-d)(l+d)}{2l(l-d)}-1\right]CT_1\circ\\ \hline\\ \text{求出密閉氣體系統吸收的總熱量為}:\\ Q=\Delta U+W\\ \hline\end{array}$		$p_1 lS = RT_1$		
$p_1'l' \cdot 2S = 2RT_1$ 列出力學平衡條件: $p_1' \cdot 2S = p_1 \cdot S + p_0(2S - S)$ 得出: $l' = l$ 2 (b) 5 分 列出結束時氣室 $I \cdot IIII$ 中氣體滿足的理想氣 體方程式: $p_2(l-d)S = RT_2 = 2RT_1 p_2'(l+d) \cdot 2S = 2RT_2'$ 得出力學平衡條件: $p_2' \cdot 2S = p_2 \cdot S + p_0(2S - S)$. 表出溫度: $T_2' = \frac{(3l-d)(l+d)}{2l(l-d)}T_1$. 2 (c) 5 分 求出大氣對密閉氣體系統所作的功: $-W = -\frac{d}{l}RT_1 \circ x$ 求出系統中密閉氣體的內能增加量: $\Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1\right]CT_1 \circ x$ 求出密閉氣體系統吸收的總熱量為: $Q = \Delta U + W$		$\begin{pmatrix} l & c & l & 2c \end{pmatrix}$ 3 pm	2	
列出力學平衡條件: $p_1' \cdot 2S = p_1 \cdot S + p_0(2S - S)$ 得出: $l' = l$ 2 (b) 5 分 列出結束時氣室 I 、 III 中氣體滿足的理想氣 體方程式: $p_2(l-d)S = RT_2 = 2RT_1 p_2'(l+d) \cdot 2S = 2RT_2'$ 得出力學平衡條件: $p_2' \cdot 2S = p_2 \cdot S + p_0(2S - S)$. 求出温度: $T_2' = \frac{(3l-d)(l+d)}{2l(l-d)}T_1$. 2 (c) 5 分 求出大氣對密閉氣體系統所作的功: $-W = -\frac{d}{l}RT_1$ 。 求出系統中密閉氣體的內能增加量: $\Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1\right]CT_1$ 。 求出密閉氣體系統吸收的總熱量為: $Q = \Delta U + W$		$p_0\left(\frac{1}{2}\cdot S + \frac{1}{2}\cdot 2S\right) = \frac{1}{2}RI_1$		
$p_0(2S-S)$ 得出: $l'=l$ 2 (b) 5 分 列出結束時氣室I、III中氣體滿足的理想氣 體方程式: $p_2(l-d)S=RT_2=2RT_1$ $p_2'(l+d)\cdot 2S=2RT_2'$ 得出力學平衡條件: $p_2'\cdot 2S=p_2\cdot S+p_0(2S-S)$. 求出溫度: $T_2'=\frac{(3l-d)(l+d)}{2l(l-d)}T_1$. 2 (c) 5 分 求出大氣對密閉氣體系統所作的功: $-W=-\frac{d}{l}RT_1$ 。		$p_1'l' \cdot 2S = 2RT_1$		
$p_0(2S-S)$ 得出: $l'=l$ 2 (b) 5 分 列出結束時氣室 I 、 III 中氣體滿足的理想氣體方程式: $p_2(l-d)S=RT_2=2RT_1$ $p_2'(l+d)\cdot 2S=2RT_2'$ 得出力學平衡條件: $p_2'\cdot 2S=p_2\cdot S+p_0(2S-S)$. 求出溫度: $T_2'=\frac{(3l-d)(l+d)}{2l(l-d)}T_1$. 2 (c) 5 分 求出大氣對密閉氣體系統所作的功: $-W=-\frac{d}{l}RT_1\circ$ 求出系統中密閉氣體的內能增加量: $\Delta U=\left[\frac{(3l-d)(l+d)}{2l(l-d)}-1\right]CT_1\circ$ 求出密閉氣體系統吸收的總熱量為: $Q=\Delta U+W$		列出力學平衡條件: $p'_1 \cdot 2S = p_1 \cdot S +$	1	
(b) 5 分 列出結束時氣室 I 、 III 中氣體滿足的理想氣體方程式: $p_2(l-d)S = RT_2 = 2RT_1$ $p_2'(l+d) \cdot 2S = 2RT_2'$ 得出力學平衡條件: $p_2' \cdot 2S = p_2 \cdot S + p_0(2S - S)$. 求出溫度: $T_2' = \frac{(3l-d)(l+d)}{2l(l-d)}T_1$. 2 (c) 5 分 求出大氣對密閉氣體系統所作的功: $-W = -\frac{d}{l}RT_1$ 。 求出系統中密閉氣體的內能增加量: $\Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1\right]CT_1$ 。 求出密閉氣體系統吸收的總熱量為: $Q = \Delta U + W$		$p_0(2S-S)$	1	
體方程式: $p_2(l-d)S = RT_2 = 2RT_1$ $p_2'(l+d) \cdot 2S = 2RT_2'$ 得出力學平衡條件: $p_2' \cdot 2S = p_2 \cdot S + p_0(2S - S)$. 求出溫度: $T_2' = \frac{(3l-d)(l+d)}{2l(l-d)}T_1$. 2 (c) 5 分 求出大氣對密閉氣體系統所作的功: $-W = -\frac{d}{l}RT_1 \circ$ 求出系統中密閉氣體的內能增加量: $\Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1\right]CT_1 \circ$ 求出密閉氣體系統吸收的總熱量為: $Q = \Delta U + W$		得出: l' = l	2	
$p_{2}(l-d)S = RT_{2} = 2RT_{1}$ $p'_{2}(l+d) \cdot 2S = 2RT'_{2}$ 得出力學平衡條件: $p'_{2} \cdot 2S = p_{2} \cdot S + p_{0}(2S - S).$ 求出溫度: $T'_{2} = \frac{(3l-d)(l+d)}{2l(l-d)}T_{1}.$ $(c) 5 分 $	(b) 5 分	列出結束時氣室I、III中氣體滿足的理想氣		
$\begin{array}{c} p_2(l-d)S = RT_2 = 2RT_1 \\ p_2'(l+d) \cdot 2S = 2RT_2' \\ \\ \hline \\ \textit{得出力學平衡條件:} \\ p_2' \cdot 2S = p_2 \cdot S + p_0(2S-S). \\ \\ \hline \textit{求出溫度:} \\ T_2' = \frac{(3l-d)(l+d)}{2l(l-d)}T_1. \\ \\ \hline \\ \textbf{(c) 5 } \mathcal{G} \\ \hline \\ \vec{x} \text{ 出 大 氣對密閉氣體系統所作的功:} \\ \\ -W = -\frac{d}{l}RT_1 \circ \\ \\ \hline \\ \vec{x} \text{ 出 系統中密閉氣體的內能增加量:} \\ \\ \Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1\right]CT_1 \circ \\ \\ \hline \\ \vec{x} \text{ 出 密閉氣體系統吸收的總熱量為:} \\ Q = \Delta U + W \\ \\ \end{array}$		體方程式:	1	
得出力學平衡條件: $p_2' \cdot 2S = p_2 \cdot S + p_0(2S - S)$. 求出溫度: $T_2' = \frac{(3l-d)(l+d)}{2l(l-d)}T_1$.		$p_2(l-d)S = RT_2 = 2RT_1$	1	
$p_{2}' \cdot 2S = p_{2} \cdot S + p_{0}(2S - S).$ 求出溫度: $T_{2}' = \frac{(3l-d)(l+d)}{2l(l-d)}T_{1}.$ $(c) 5 分 $				
$p_2' \cdot 2S = p_2 \cdot S + p_0(2S - S).$		得出力學平衡條件:	2	
$T_2' = \frac{(3l-d)(l+d)}{2l(l-d)}T_1.$ $(c) 5 分 $				
$T_2' = \frac{(S_1)(V_1)}{2l(l-d)}T_1.$ (c) 5 分 求出大氣對密閉氣體系統所作的功: $-W = -\frac{d}{l}RT_1 \circ$ 求出系統中密閉氣體的內能增加量: $\Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1\right]CT_1 \circ$ 求出密閉氣體系統吸收的總熱量為: $Q = \Delta U + W$		求出温度:		
$-W = -\frac{d}{l}RT_1$ 。 求出系統中密閉氣體的內能增加量: $ \Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1 \right] CT_1$ 。 求出密閉氣體系統吸收的總熱量為: $ Q = \Delta U + W $		$T_2' = \frac{(3l-d)(l+d)}{2l(l-d)}T_1.$	2	
$-W = -\frac{u}{l}RT_1$ 。 求出系統中密閉氣體的內能增加量: $ \Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1 \right] CT_1 $ 求出密閉氣體系統吸收的總熱量為: $ Q = \Delta U + W $	(c) 5 分	求出大氣對密閉氣體系統所作的功:		
求出系統中密閉氣體的內能增加量: $\Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1\right]CT_1 \circ$ 求出密閉氣體系統吸收的總熱量為: $Q = \Delta U + W$		$-W - \frac{d}{d}PT$	1	
$\Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1 \right] CT_1$ 。 $ 求出密閉氣體系統吸收的總熱量為: $ $ Q = \Delta U + W $		$V = \frac{1}{l} M_1$		
$\Delta U = \left[\frac{\Delta U}{2l(l-d)} - 1\right] CT_1$ 。 求出密閉氣體系統吸收的總熱量為: $Q = \Delta U + W$		求出系統中密閉氣體的內能增加量:		
$Q = \Delta U + W$		$\Delta U = \left[\frac{(3l-d)(l+d)}{2l(l-d)} - 1\right] CT_1 \circ $	2	
		求出密閉氣體系統吸收的總熱量為:		
		$Q = \Delta U + W$		
			2	