2020年第21屆亞洲物理奧林匹亞競賽及第51屆國際物理奧林匹亞競賽

國家代表隊複選考試

理論試題

2020年2月22日

13:30~16:30

考試時間:三小時

〈〈注意事項〉〉

- 一、限使用黑色或藍色原子筆作答。
- 二、本試題共有計算題六大題,每題25分,合計150分。
- 三、各計算題請在答案卷上指定之位置作答,每大題答案 卷二頁。
- 四、可使用掌上型計算器(含科學工程式計算機)。

可能用到的數學公式(t為時間,x為任意物理量)

1.
$$f'(x) \equiv \frac{df}{dx}$$
, $f''(x) \equiv \frac{d^2f}{dx^2} = \frac{d}{dx} \left(\frac{df}{dx}\right)$;
 $\dot{x}(t) \equiv \frac{dx}{dt}$, $\ddot{x}(t) \equiv \frac{d^2x}{dt^2}$ \circ

2.
$$\int (ax+b)^m dx = \frac{(ax+b)^{m+1}}{(m+1)a}, \quad m \neq -1; \quad \int (ax+b)^{-1} dx = \frac{1}{a} \ln(ax+b);$$
$$\frac{d}{dx} (ax+b)^m = ma \cdot (ax+b)^{m-1}; \quad \frac{d}{dx} \ln(ax+b) = a \cdot (ax+b)^{-1}.$$

3.
$$\frac{de^{ax}}{dx} = ae^{ax} \cdot \frac{d\sin ax}{dx} = a\cos ax \cdot \frac{d\cos ax}{dx} = -a\sin ax ;$$

$$\int e^{ax} dx = \frac{1}{a}e^{ax} \cdot \int \sin ax \, dx = -\frac{1}{a}\cos ax \cdot \int \cos ax \, dx = \frac{1}{a}\sin ax \cdot \frac{1}{a}\sin ax = -\frac{1}{a}\sin ax \cdot \frac{1}{a}\sin ax \cdot \frac{1}{$$

4. 當
$$|x| \ll 1$$
, $(1+x)^{\alpha} \approx 1 + \alpha x$,
$$e^{x} \approx 1 + x$$
, $\sin x \approx x$, $\cos x \approx 1 - \frac{x^{2}}{2}$ 。

- 5. 線性、常係數、齊次一階微分方程式 ax'(t) + bx(t) = 0 的一般解形式為 $x(t) = \alpha e^{st}$, 其中s是右列一次方程式as + b = 0的根, 而 α 是積分常數,可由初始條件x(0)決定。
- 6. 線性、常係數、齊次二階微分方程式 ax''(t) + bx'(t) + cx(t) = 0 的一般解形式為 $x(t) = \alpha_1 e^{s_1 t} + \alpha_2 e^{s_2 t}$, 其中 s_1 , s_2 是右列二次方程式 $as^2 + bs + c = 0$ 的根, 而 α_1 , α_2 是積分常數,可由初始條件x(0), x'(0) 決定。

2020年第21屆亞洲物理及第51屆國際物理奧林匹亞競賽 國家代表隊複選考試試題

本試題共有計算題六大題,每題25分,合計150分。

一、內燃機

- (A) 奧圖(Otto)引擎為內燃機常見的型態。其運轉步驟如圖 1 所示。 $1\rightarrow 2$ 與 $3\rightarrow 4$ 為絕熱過程, $2\rightarrow 3$ 與 $4\rightarrow 1$ 為等體積過程。試求奧圖引擎之效率 e_0 。
- (B) 阿特金森(Atkinson)引擎乃由奧圖引擎改良而來,近年來越來越常裝置於私家客車上。 其標準運轉步驟如圖 2 所示。 $1\rightarrow 2$ 與 $3\rightarrow 4$ 為絕熱過程, $2\rightarrow 3$ 為等體積過程,而 $4\rightarrow 1$ 近似等壓過程。阿特金森引擎基本構想為,與奧圖引擎相較,藉降低壓縮比 $r_{\rm C}=V_2/V_1$ 來減少燃燒油氣量,但仍享有同樣的對外作功澎脹比 $r_{\rm E}=V_4/V_3$ 。試求阿特金森引擎之效率 $e_{\rm A}$ 。
- (C) 比較 r_{c} 相同(燃燒等量燃料)的奧圖引擎與與阿特金森引擎。試定量比較兩個引擎的效率,何者效率較高?

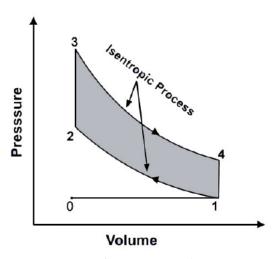


圖 1 奧圖(Otto)引擎

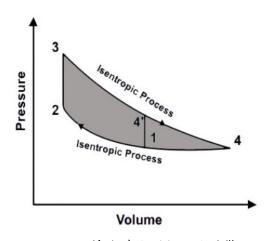


圖 2 阿特金森(Atkinson)引擎

二、法布立-培若干涉儀

法布立-培若干涉儀 (Fabry-Pérot interferometer)中包含兩片平行的薄玻璃片 (玻璃片的厚度可忽略),其中兩塊玻璃片相對的內表面都具有高反射率。如圖 3 所示,當光以傾斜角 θ 入射此干涉儀時,由於光波在兩玻璃片中多次反射,使得透射光在遠方的屏幕上形成同心圓的干涉條紋。設兩玻璃片的間距為t,屏幕與干涉儀的距離為L,入射光波長為 λ ,試回答以下問題。

- (A)請計算建設性干涉的條件。
- (B) 算自中心點向外第p道干涉條紋的半徑。
- (C) 若將這兩塊間距為t的平行薄玻璃片換成厚度t、折射率 μ 的透明物體,這樣的系統稱為法布立-培若標準具(Fabry-Pérot etalon),如圖 4 所示。試問此時建設性干涉的條件、第p級干涉條紋的半徑分別為何?
- (D)承(B),我們可以透過調整玻璃片間距t,來辨識細微的波長差異,而測得精密的光譜。當入射光波長為650 nm,玻璃板間距為2 cm,屏幕與干涉儀的距離為1m,且

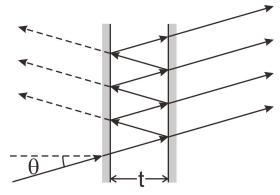


圖 3 法布立-培若干涉儀示意圖

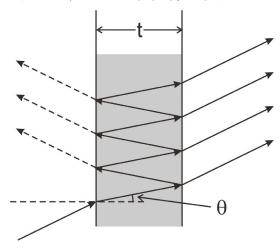


圖 4 法布立-培若標準具示意圖

恰在屏幕上形成的同心圓的干涉條紋。若利用精密螺旋將玻璃間距調整 $\Delta t = 2 \, \mu m$ 後,在相同的位置再次觀察到同心圓干涉條紋,試計算這個情況下形成干涉的光波長。

三、鏡像法

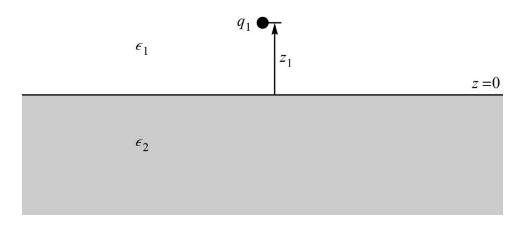


圖 5

如圖 5 所示,考慮位於 $\mathbf{r}_a = z_a \hat{\mathbf{z}}(z_a > 0)$ 的點電荷 q_a 。若已知靜電場 \mathbf{E} 在介質的邊界上必須滿足兩個邊界條件: (i) \mathbf{E} 的切向分量連續;(ii) $\epsilon \mathbf{E}$ 的法向分量連續。由鏡像法我們預期在 $\mathbf{z} \geq 0$ 區域的電場會是由原電荷與位於 \mathbf{r}_a' 處的鏡像電荷 \mathbf{q}_a' 疊加而成;而在 $\mathbf{z} < 0$ 區域的電場則會是由位於 \mathbf{r}_a'' 處的等效電荷 \mathbf{q}_a'' 所產生,即

$$\boldsymbol{E}_{a} = \begin{cases} \frac{q_{a}(r-r_{a})}{4\pi\epsilon_{1}|r-r_{a}|^{3}} + \frac{q'_{a}(r-r'_{a})}{4\pi\epsilon_{1}|r-r'_{a}|^{3}}, & z \geq 0; \\ \frac{q''_{a}(r-r''_{a})}{4\pi\epsilon_{2}|r-r''_{a}|^{3}}, & z < 0. \end{cases}$$

- (A) 證明 $q'_a = \frac{\epsilon_1 \epsilon_2}{\epsilon_1 + \epsilon_2} q_a$, $q''_a = \frac{2\epsilon_2}{\epsilon_1 + \epsilon_2} q_a$, $r'_a = -z_a \hat{z}$, $r''_a = z_a \hat{z}$ 。
- (B) 求電荷 q_a 所受到來自介電質 2 的作用力 F_a ,及由 F_a 所導致的電位能 V_a 。
- (C) 由電磁學知: 電場E在介質中的能量密度為 $\frac{1}{2}\epsilon E^2$ 。利用這個觀念計算這個系統的能量,並與(B)小題的結果做比較。
- (D) 若有另一個位於 $r_b = x_b \hat{x} + z_b \hat{z}$ 的點電荷 q_b ,且 $z_b < 0$,求 q_a 所受到來自 q_b 的作用力 F_{ab} ,及 F_{ab} 對應的電位能 V_{ab} 。
- (E) 承(D)小題,若 $z_b > 0$,且 $r_a \neq r_b$ 。求 q_a 所受到來自 q_b 的作用力 F_{ab} ,及 F_{ab} 對應的電位能 V_{ab} 。

四、彈跳的旋轉球

在各式的球類運動中常常可觀察到旋轉的球在擊打或碰撞後,其運動軌跡變得更為多樣。本題主要在探索一個旋轉球在碰撞後的彈跳行為。如圖 6 所示,球的質量為M,轉動慣量為 $I=\alpha MR^2$,此處R為球的半徑, α 為一參數,碰撞面為 x-z 面,球的入射速度 $\vec{v}_1=v_{1x}\hat{x}+v_{1y}\hat{y}$,轉動角速度為 $\vec{\omega}_1$;碰撞後球的速度 $\vec{v}_2=v_{2x}\hat{x}+v_{2y}\hat{y}$,轉動角速度為 $\vec{\omega}_2$, $\vec{\omega}_1=\omega_1\hat{z}$ 、 $\vec{\omega}_2=\omega_2\hat{z}$, f_s 為靜摩擦係數。為簡化問題我們考慮以下情況:

- (1) 忽略球所受的空氣阻力與重力,
- (2) 碰撞過程為彈性碰撞 (動能守恆),
- (3) 碰撞點 () 固定不動 (即球體與地面為絕對粗糙),
- (4) 垂直碰撞面的速度 $v_{1y} = -v_{2y}$ 。 回答以下問題:

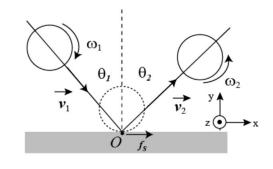
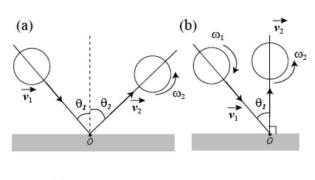
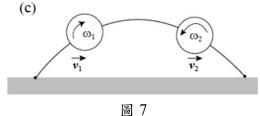


圖 6 彈跳的旋轉球

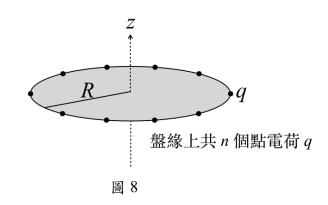
- (A) 碰撞後的速度為 v_{2x} 與角速度為 ω_2 可以表為 $\begin{cases} v_{2x} = av_{1x} + b(R\omega_1) \\ R\omega_2 = cv_{1x} + d(R\omega_1) \end{cases}$ (1) 求參數a,b,c、與 d。
- (B) 考慮圖 7(a)的情況,入射角 $\theta_1=45^\circ$, $\omega_1=0$ (無旋轉),球為一空心球, $\alpha=1/3$,求 v_{2x}/v_{1x} 與 θ_2 。
- (C) 考慮圖 7(b)的情況,碰撞後角度為 $\theta_2 = 0^\circ$,求 ω_2/ω_1 與 $R\omega_1/v_{1x}$ 。
- (D)考慮圖 7(c)的情況,球在兩點間彈跳,求 v_{2x}/v_{1x} , ω_2/ω_1 與 $R\omega_1/v_{1x}$ 。





五、帶電圓盤在靜磁場中的運動

如圖 8 所示,有一質量為M、半徑為R的均質絕緣圓盤,盤緣上等間距黏上 n個點電荷q,點電荷質量可忽略不計。圓盤置於一固定的外加磁場B中(假設此磁場由一距離很遠的永久磁鐵提供)。將圓盤軸心令為Z軸。已知外加磁場對Z軸具有圓柱對稱性(意即磁場在圓柱座標中只為r與Z的函數,且只有r與Z分量,其中r為



對軸心的距離),且磁場的Z分量為 $B_z = B_0 + B_1 Z$ 。初始時,此圓盤以角速度 $\omega_0 \hat{\mathbf{Z}}$ 旋轉,並可自由移動。(假設並無任何微擾力矩造成圓盤傾斜,且電荷運動所造成的磁場遠小於外加磁場,故可忽略。)

- (A) 試求出此外加磁場的r分量 Br 對位置的函數。
- (B) 試求出當圓盤角速度為 $\omega \hat{z}$ 、圓盤質心線速度為 $\hat{z}\hat{z}$ 時,磁場施加於圓盤邊緣上任一點電荷的磁力(以 \hat{r} 、 $\hat{\phi}$ 、 \hat{z} 表示,其中 $\hat{\phi}$ 為沿切線方向的單位向量)。
- (C) 試寫下此帶電圓盤的運動方程式,進而求出
 - i. 此圓盤在z軸上的位置對時間的函數。(設初始位置z=0。)
 - ii. 此圓盤角速率對時間的函數。
- (D) 試依下列步驟分析此系統之能量。
 - i. 請求出此圓盤系統質心動能之時變率。(可用ż表示。)
 - ii. 勞侖茲力顯示:運動中的電荷所受磁力方向與電荷速度垂直,故磁力必不作功。但上述(i)小題的答案不為零,故質心每單位時間所獲之動能應來自系統另一部份所損失的功率。試分析此圓盤系統相對於質心的動能,以詮釋此系統之能量守恆。

提示:圓盤相對於軸心的轉動慣量為 MR²/2。

六、動線圈麥克風的斷路響應

(A)一個阻尼諧振子的質量為m、阻力常數為b、力常數為k,在外力 F_0 cos ω t的驅動下,其位移x、速度 \dot{x} 與加速度 \ddot{x} 滿足下列關係式:

$$m\ddot{x} + b\dot{x} + kx = F_0 \cos \omega t \tag{1}$$

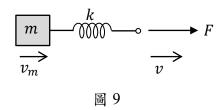
上式與LRC串聯電路在電動勢 V_0 cos ωt 驅動下,其電容器上電荷Q(t)所滿足的微分方程式,在形式上是類似的:

$$L\ddot{Q} + R\dot{Q} + \frac{Q}{C} = V_0 \cos \omega t \tag{2}$$

上二式中的ω為角頻率。

因此,仿照LRC電路的電阻R、電抗X、電阻抗Z,我們也可以定義用於分析力學振盪器的力學阻R'、力學抗X'、力學阻抗Z'。(注:力學阻、力學抗也簡稱為力阻、力抗。) 試利用(1)、(2)兩式的類似性,給出上述諧振子運動的R'、X'、Z'。

(B)考慮如圖 9 所示、在外力 $F(t) = F_0 \cos \omega t$ 作用下做直線運動的質點-理想彈簧系統:在圖 9 中的外力F,作用於力常數為k的彈簧末端,且作用點以速度v向右運動,以致質量m的質點以速度 v_m 運動。



就圖 9 所示系統,試畫出可用以分析運動速度v的等效電路圖,並<u>於圖上標示出各等</u> **效電路元件 所對應的力學物理量**,以之解出質點速度 v_m 。

(C)一個動線圈麥克風的截面圖(下方開管以外的部分具圓柱對稱性)如圖 10 所示:

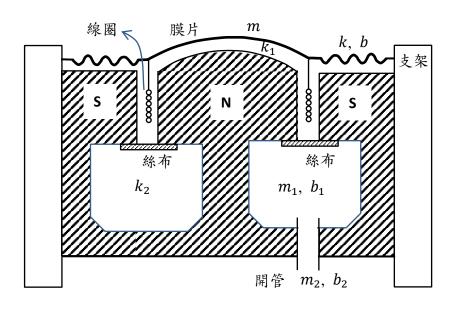
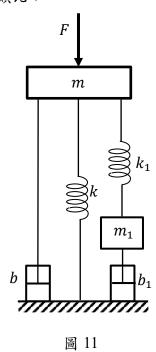


圖 10

此麥克風的工作用原理如下:質量為m之拱形膜片,在聲波壓力P的推動下會振動,使得固定於膜片的線圈,在靜止磁鐵的水平徑向磁場B中運動,產生感應電動勢 \mathcal{E} ,而成為輸出信號。

如圖 10 所示,振動膜片在周邊以表面呈波狀的環帶支撐,並連接到磁鐵固定支架上,環帶的力常數為k,阻力常數為b;力常數 k_1 主要來自膜片下方空腔內受壓縮的空氣,而質量 m_1 與阻力常數 b_1 主要來自通過絲布中毛細管孔的空氣;力常數 k_2 、質量 m_2 與阻力常數 b_2 都相當小,主要來自絲布下方空腔內的空氣,可以忽略。圖 11 為動線圈麥克風的力學類比:



試畫出圖 11 所示阻尼振盪系統的等效電路(忽略重力),並<u>於圖上標示出各等效電路</u> <u>元件所對應的力學物理量</u>。

假設聲波振動的角頻率為ω,試利用等效電路,求出無輸出電流時(即斷路時)麥克風的複數阻抗Z (複數相量以正體符號表示)。

已知聲壓的振幅為P,拱形膜片的截面積為A,線圈在磁場中的導線總長為l,則此麥克風在無輸出下的斷路響應 $M_D \equiv \mathcal{E}/P$ 為何?

2020年第21屆亞洲物理及第51屆國際物理奧林匹亞競賽國家代表隊複選考試參考解答

第1題評分標準:

小題	內容	得	備
		分	註
(A)	列出 $Q_{\rm h} = C_V(T_3 - T_2), \ Q_{\rm c} = C_V(T_4 - T_1)$	2	
9分	列出 $\frac{Q_c}{Q_h} = \frac{(T_4 - T_1)}{(T_3 - T_2)} = \frac{V_1(P_4 - P_1)}{V_2(P_3 - P_2)}$	2	
	列出 $P_4V_1^{\gamma} = P_3V_2^{\gamma}$ 及 $P_1V_1^{\gamma} = P_2V_2^{\gamma}$	2	
	列出 $e_0 = 1 - Q_c/Q_h$	1	
	得出 $e_0=1-r^{\gamma-1}$, $r\equiv V_2/V_1$ 。	2	
(B)	列出 $Q_{\rm h} = C_V(T_3 - T_2), \ Q_{\rm c} = C_P(T_4 - T_1)$	2	
9分	列出 $\frac{Q_{\rm c}}{Q_{\rm h}} = \gamma \frac{(T_4 - T_1)}{(T_3 - T_2)}$ 。	2	
	列出 $T_2 = T_1 r_C^{1-\gamma}$	1	
	得出 $T_4 = T_1(V_4/V_1) = T_1(r_C r_E)$	2	
	得出 $T_3 = T_4 r_{\rm E}^{\gamma-1} = T_1 (r_{\rm C} r_{\rm E}^{\gamma})$		
	$e_{\rm A} = 1 - \gamma r_{\rm C}^{\gamma - 1} \left[\frac{(r_{\rm C} r_{\rm E}) - 1}{(r_{\rm C} r_{\rm E})^{\gamma} - 1} \right]$	2	
(C) 7分	寫出 $e_A - e_O = r_C^{\gamma - 1} \left\{ 1 - \gamma \left[\frac{(r_C r_E) - 1}{(r_C r_E)^{\gamma - 1}} \right] \right\} = r_C^{\gamma - 1} f_{\gamma}(x)$,其中 $f_{\gamma}(x) = 1 - \gamma \frac{x - 1}{x^{\gamma - 1}}, x = (r_C r_E) \circ$	2	
	當γ > 1, 用微分作數學 ^{「(X)}	3	
	證明或作圖顯示證 $f_{\gamma}(x)$ 0.4 為單調遞增函數。		
	0.2		
	-0.2 4 6 8 10 X		
	當 $x > 1$, $f_{\gamma}(x) > 0$,即 $e_{A} > e_{O}$ 。	2	
	當 $x < 1$, $f_{\gamma}(x) < 0$,即 $e_{A} < e_{O}$ 。		

第2題評分標準:

小題	內容	得分	備註
(A)	列出相鄰兩透射光的光程差: $\Delta l = \overline{BC} + \overline{CK}$,	2	
7分	得出 $\overline{BC} = \frac{t}{\cos\theta}$, $\overline{CK} = \overline{BC}\cos 2\theta$,	2	
	列出建設性干涉的條件: $\Delta l = n\lambda$	2	
	化簡建設性干涉的條件:	1	
	$\Delta l = \frac{t}{\cos\theta} (1 + \cos 2\theta) = 2t \cos\theta = n\lambda \circ$		
(B)	列出第 p 道干涉條紋的半徑 r_p 與對應的角度 $ heta_p$ 的	2	
8分	關係: $r_p = L an heta_p$ 。		
	$\theta_p \ll 1 \Rightarrow r_p \approx L\theta_p \circ$	1	
	$n_p = \frac{2t\cos\theta_p}{\lambda} \approx \frac{2t}{\lambda} \left(1 - \theta_p^2/2\right)$	2	
	得出 $\theta_p = \sqrt{2\left(1 - \frac{n_p \lambda}{2t}\right)}$ 。		
	$n_p = (2t/\lambda - \varepsilon) - (p-1) \approx 2t/\lambda - (p-1) \circ$	1	
	得出 $r_p \approx L\sqrt{\frac{\lambda}{t}(p-1)}$	2	
(C)	改為使用厚度t、折射率μ的某透明物體代替平	1	
5分	行玻璃片,則波長變為 λ/μ。		
	建設性干涉條件變為	2	
	$\Delta l = 2t \cos\theta = n\lambda/\mu$ 或 $2\mu t \cos\theta = n\lambda$ ∘		
	第 p 道繞射的半徑變為 $r_p = L\sqrt{\lambda(p-1)/(\mu t)}$	2	
(D)	在相同位置產生同心圓干涉條紋,代表 $r_p \cdot \theta_p$	3	
5分	相同: $\frac{\lambda}{t} = \frac{\lambda'}{t'} \Longrightarrow \lambda' = \frac{t'}{t} \lambda$ 。		
	當 $t' = 2.0002 \text{ cm}$, $\lambda' = 650.065 \text{ nm}$;	2	
	當 $t' = 1.9998 \text{ cm}$, $\lambda' = 649.935 \text{ nm}$ 。		

第3題評分標準:

小題	內容	得分	備註
(A)	由 E 的切向分量連續得出:	2	
6分	$\frac{q_a}{\epsilon_1} + \frac{q_a'}{\epsilon_1} = \frac{q_a''}{\epsilon_2} \circ$		
	由 <i>є E</i> 的法向分量連續得出:	2	
	$q_{a} - q_{a}' = q_{a}''$		
	解出:	2	
	$q_{a}' = \frac{\epsilon_{1} - \epsilon_{2}}{\epsilon_{1} + \epsilon_{2}} q_{a} \cdot q_{a}'' = \frac{2\epsilon_{2}}{\epsilon_{1} + \epsilon_{2}} q_{a}$		
(B) 5分	求出 $\mathbf{F}_{a} = \frac{(\epsilon_{1} - \epsilon_{2})q_{a}^{2}\hat{\mathbf{z}}}{16\pi\epsilon_{1}(\epsilon_{1} + \epsilon_{2})z_{a}^{2}}$	2	
	列出 $V_{\rm a} = -\int_{\infty}^{z_{\rm a}} \boldsymbol{F}_{\rm a} \cdot (dz_{\rm a}\hat{\boldsymbol{z}})$	2	
	求出 $V_{\rm a} = \frac{(\epsilon_1 - \epsilon_2)q_{\rm a}^2}{16\pi\epsilon_1(\epsilon_1 + \epsilon_2)z_{\rm a}}$	1	
(C)	列出在z≥0區域的能量:	1	
6分	$\int_{0}^{\infty} dz \int_{-\infty}^{\infty} dx dy \left\{ \frac{\epsilon_{1}}{2} \left(\frac{(q_{a}')^{2}}{(4\pi\epsilon_{1})^{2} r-r_{a}' ^{4}} + 2 \frac{q_{a}q_{a}'(r-r_{a}) \cdot (r-r_{a}')}{(4\pi\epsilon_{1})^{2} r-r_{a} ^{3} r-r_{a}' ^{3}} \right) \right\}$		
	求出第一項: $\varepsilon_1 = \frac{(\epsilon_1 - \epsilon_2)^2 q_a^2}{32\pi\epsilon_1(\epsilon_1 + \epsilon_2)^2 z_a}$ 。	1	
	求出第二項: $\varepsilon_2 = \frac{(\epsilon_1 - \epsilon_2)q_a^2}{16\pi\epsilon_1(\epsilon_1 + \epsilon_2)z_a}$ 。	1	
	列出在Z < 0區域的能量:	2	
	$\varepsilon_{3} = \int_{-\infty}^{0} dz \int_{-\infty}^{\infty} dx dy \left\{ \frac{\epsilon_{2}}{2} \left \frac{q_{a}'' \{ x \hat{\mathbf{x}} + y \hat{\mathbf{y}} + (z - z_{a}'') \hat{\mathbf{z}} \}}{4\pi \epsilon_{2} \{ x^{2} + y^{2} + (z - z_{a}'')^{2} \}^{3/2}} \right ^{2} - \frac{\epsilon_{1}}{2} \left \frac{q_{a}(r - r_{a})}{4\pi \epsilon_{1} r - r_{a} ^{3}} \right ^{2} \right\}$		
	求出: $\varepsilon_3 = \frac{-(\epsilon_1 - \epsilon_2)^2 q_a^2}{32\pi\epsilon_1(\epsilon_1 + \epsilon_2)^2 z_a}$ 。	1	
(D) 4分	求出 $\mathbf{F}_{ab} = \frac{q_a q_b (-x_b \hat{\mathbf{x}} + (z_a - z_b) \hat{\mathbf{z}})}{2\pi (\epsilon_1 + \epsilon_2) \{x_b^2 + (z_a - z_b)^2\}^{3/2}}$	2	
	求出 $V_{ab} = -\int_{\infty}^{z_a} \mathbf{F}_{ab} \cdot (dz_a \hat{\mathbf{z}}) = \frac{q_a q_b}{2\pi (\epsilon_1 + \epsilon_2) \sqrt{x_b^2 + (z_a - z_b)^2}}$	2	
(E)		2	
4分	求出 $V_{ab} = \frac{q_a q_b}{4\pi\epsilon_1 \sqrt{x_b^2 + (z_a - z_b)^2}} + \frac{(\epsilon_1 - \epsilon_2)q_a q_b}{4\pi\epsilon_1 (\epsilon_1 + \epsilon_2) \sqrt{x_b^2 + (z_a + z_b)^2}}$	2	
			•

第4題評分標準:

小題	內容	得分	備註
(A)	列出能量守恆	2	
9分	$K = \frac{1}{2}Mv_1^2 + \frac{1}{2}I\omega_1^2 = \frac{1}{2}Mv_2^2 + \frac{1}{2}I\omega_2^2 \circ$		
	列出角動量守恆	2	
	$L = I\omega_1 - MRv_{1x} = I\omega_2 - MRv_{2x} \circ $		
	$v_{1x} - v_{2x} = \alpha R(\omega_1 - \omega_2) \circ$	1	
	求出 $\begin{cases} v_{2x} = -\frac{\alpha-1}{\alpha+1}v_{1x} - \frac{2\alpha}{\alpha+1}R\omega_1 \\ R\omega_2 = -\frac{2}{\alpha+1}v_{1x} + \frac{\alpha-1}{\alpha+1}R\omega_1 \end{cases}$ °	4	
	$a = -\frac{\alpha - 1}{\alpha + 1}, b = -\frac{2\alpha}{\alpha + 1}, c = -\frac{2}{\alpha + 1}, d = \frac{\alpha - 1}{\alpha + 1}$		
(B)	若為空心球, $\alpha=1/3$,	2	
6分	求出 $a = 1/2$, $b = -1/2$, $c = -3/2$, $d = -1/2$ 。		
	因 $\theta_1 = 45^\circ$, $v_{1x} = v_{1y}$;	1	
	已知 $\omega_1=0$,求得	3	
	$v_{2x}/v_{1x} = 1/2$,		
	$R\omega_2/v_{1x}=-3/2.$		
	$\theta_2 = \tan^{-1}(v_{2x}/v_{2y}) = 26.56^{\circ}$		
(C) 4分	$求出\omega_2/\omega_1 = -2$	2	
	求出 $R\omega_1/v_{1x}=1$	2	
(D)	求出 $R\omega_1/v_{1x}=3$	2	
6分	求出 $\omega_2/\omega_1 = -1$	2	
	求出 $v_{2x}/v_{1x} = -1$	2	

第5題評分標準:

小題	內容	得分	備註
(A)	列出由磁場之高斯定律: $\oint \mathbf{B} \cdot d\mathbf{a} = 0$ 。	2	
4分	$B_r = -B_1 r/2$	2	
(B)	列出 $F_{q,\mathrm{ext}} = q v_q \times B_{\mathrm{ext}}$ 。	2	
5分	得出 $\mathbf{F}_{q,\text{ext}} = q\omega R(B_0 + B_1 z)\hat{\mathbf{r}} - \frac{q\dot{z}B_1R}{2}\hat{\boldsymbol{\phi}} + \frac{q\omega R^2B_1}{2}\hat{\mathbf{z}}$	3	
(C) 10 分	列出 $\frac{MR^2\dot{\omega}}{2}=nRF_{q,\phi}$ 。	1	
	得出 $\dot{\omega} = -\frac{nqB_1}{M}\dot{z}$ 。	1	
	列出牛頓第二定律: $M\ddot{z} = nF_{q,z}$	1	
	化簡得到 $\ddot{z} = \frac{nqR^2B_1}{2M}\omega$	1	
	列出初始條件: $\omega(0) = \omega_0$ 、 $\dot{\omega}(0) = 0$ $z(0) = 0$ 、 $\dot{z}(0) = 0$	2	
	得出 $z(t) = \frac{M\omega_0}{nqB_1}(1-\cos\Omega t)$	3	
	得出 $\omega(t) = \omega_0 \cos\Omega t$	1	
(D) 6 分	得出 $F = \sum F_{q,\text{ext}} = \frac{nq\omega R^2 B_1}{2}$ \hat{z}	2	
	得出質心動能時變率: $\mathbf{F} \cdot \mathbf{v} = \frac{nq\omega R^2 B_1}{2} \dot{z}$	1	
	得出 $oldsymbol{ au} = \sum oldsymbol{r}_q imes oldsymbol{F}_q = -rac{nq\dot{z}B_1R^2}{2}oldsymbol{\hat{z}}$	1	
	得出轉動動能時變率: $\boldsymbol{\tau} \cdot \boldsymbol{\omega} = -\frac{nq\omega R^2 B_1}{2} \dot{z}$	1	
	得出能量守恆的結論。	1	

第6題評分標準:

小題	內容	得分	備註
(A)		1	佣缸
4分		2	
	得出力學抗: $X' = (\omega m - k/\omega)$	1	
	得出力學阻抗: $Z' = \sqrt{b^2 + (\omega m - k/\omega)^2}$ 。	1	
(B) 8分	畫出等效電路:	4	
	F		
	質量m(相當於電感)與力常數的倒數1/k(相當於電容)並		
	聯(2分);速度v相當於電路總電流,具有分支(1分);		
	施力F相當於外加電動勢源,跨接於電感、電容 (1		
	分)。		
	寫出 $v = \frac{F}{Z} = \frac{F_0}{\omega m} e^{j(\omega t - \pi/2)} \left(1 - \frac{m\omega^2}{k} \right)$	1	
	$(m\omega^2) F_2$	1	
	求出 $v = \text{Re}(v) = \left(1 - \frac{m\omega^2}{k}\right) \frac{F_0}{\omega m} \sin \omega t$		
	求出 $v_m = \text{Re}\left(\mathbf{v}_m\right) = \frac{F_0}{\omega m}\sin\omega t$	2	
(C) 13 分	畫出等效電路:	5	
13))	$F = \bigcirc 0000 \qquad \qquad b_1 = 0$ $= 1/k_1 = 0$ $= 1/k_1 = 0$ $= 1/k_1 = 0$ $= 1/k_1 = 0$		
	質量m ₁ 與阻力常數b ₁ 串聯(1分),再與1/k ₁ 並聯(1		
	分);質量m、力常數倒數1/k、阻力常數b三者串聯(1		
	β),速度 ν 相當於通過此串聯電路段的電流 (1β) ;		
	以上二電路段串聯後,接於施力F(相當於外加電動勢		
	源)的兩端(1分)。		
	得出等效阻抗 $Z_1: Z_1 = \frac{k_1(b_1+j\omega m_1)}{j\omega(b_1+j\omega m_1)+k_1}$ 。	2	
	得出整個線路的等效總阻抗 $Z_m = R_m + jX_m$,	3	
	$Z_{\rm m} = Z_1 + b + j\left(\omega m - \frac{k}{\omega}\right) \circ$		

得出麥克風在無輸出下的斷路響應 M_D :	3	
$M_{\rm D} \equiv \frac{\varepsilon}{P} = \frac{Blv}{F/A} = \frac{ABl}{Z_{\rm m}}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		