2021年第21屆亞洲物理奧林匹亞競賽及第51屆國際物理奧林匹亞競賽

國家代表隊複選考試

理論試題

2021年1月30日

13:30~16:30

考試時間:三小時

〈〈注意事項〉〉

- 一、限使用黑色或藍色原子筆作答。
- 二、本試題共有計算題六大題,每題25分,合計150分。
- 三、各計算題請在答案卷上指定頁面的正面作答,每大題答案卷二或三頁。
- 四、可使用掌上型計算器(含科學工程式計算機)。

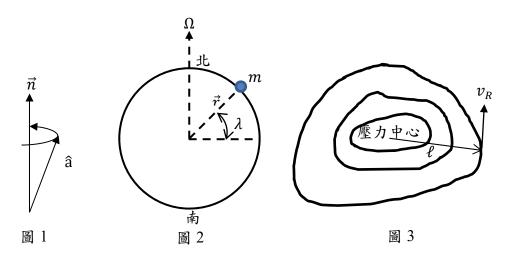
可能用到的數學公式(t為時間,x為任意物理量)

1.
$$f'(x) \equiv \frac{df}{dx}$$
, $f''(x) \equiv \frac{d^2f}{dx^2} = \frac{d}{dx} \left(\frac{df}{dx}\right)$;
 $\dot{x}(t) \equiv \frac{dx}{dt}$, $\ddot{x}(t) \equiv \frac{d^2x}{dt^2}$.

2.
$$\frac{d}{dx}(ax+b)^m = ma \cdot (ax+b)^{m-1}$$
; $\frac{d}{dx}\ln(ax+b) = a \cdot (ax+b)^{-1}$; $\frac{de^{ax}}{dx} = ae^{ax}$; $\frac{d\sin(ax)}{dx} = a\cos(ax)$; $\frac{d\cos(ax)}{dx} = -a\sin(ax)$

$$4.\sin^2\alpha = \frac{1-\cos(2\alpha)}{2} , \quad \cos^2\alpha = \frac{1+\cos(2\alpha)}{2}$$

5. 當
$$|x| \ll 1$$
, $(1+x)^{\alpha} \approx 1 + \alpha x$,
$$e^{x} \approx 1 + x$$
, $\sin x \approx x$, $\cos x \approx 1 - \frac{x^{2}}{2}$ 。


2021年第21屆亞洲物理及第51屆國際物理奧林匹亞競賽 國家代表隊複選考試試題

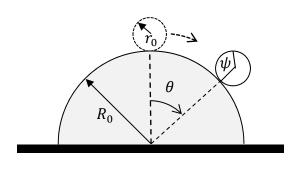
本試題共有計算題六大題,每題25分,合計150分。

一、科氏力與壓力氣旋

氣旋和柯氏力相關,因此在地球表面北半球和南半球所造成的氣旋會有不同。

- (A) 一長度為 1 的單位向量 \hat{a} 繞一固定轉軸 \vec{n} 以角速度 $\vec{\omega}=\omega\hat{n}$ 旋轉, ω 為一個常數,如下圖 1。求 \hat{a} 隨時間的變化率 $\frac{d\hat{a}}{dt}$ 。
- (B) 質量為m的質點在地球表面的緯度λ位置,以速度iを地球表面運動,如下圖 2。已知地球以等角速度 Ω 自轉(方向向北),地球的中心到質點的位置向量為 $\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$, $(\hat{i}\cdot\hat{j}\cdot\hat{k})$ 為以地球中心為原點的慣性座標系,如圖 2 所示,且 $\vec{v}=\frac{d\vec{r}}{dt}$ 。而隨著地球自轉觀察質點位置為 $\vec{r}'=x'\hat{i}'+y'\hat{j}'+z'\hat{k}'$, $(\hat{i}'\cdot\hat{j}'\cdot\hat{k}')$ 為以地球中心為原點,隨地球轉動的座標系,且此坐標系觀察到的速度為 $\vec{v}_R\equiv\frac{dx'}{dt}\hat{i}'+\frac{dy'}{dt}\hat{j}'+\frac{dz'}{dt}\hat{k}'$,則觀測此質點所受的力 $\vec{F}_R\equiv m(\frac{d^2x'}{dt^2}\hat{i}'+\frac{d^2y'}{dt^2}\hat{j}'+\frac{d^2z'}{dt^2}\hat{k}')$ 為何?(以 \vec{v} , \vec{v}_R , \vec{r} , $\vec{\Omega}$ 表示)

(C) 已知有一氣旋在緯度為 λ 的地方,且距離壓力中心 ℓ 位置的壓力為P,且該位置附近的壓力梯度 $(\lim_{\Delta\ell\to 0}\left|\frac{\Delta P}{\Delta\ell}\right|=\left|\frac{dP}{d\ell}\right|)$ 和空氣的密度 ρ 均為定值,如上圖 3。因為地球自轉的 Ω 很小,所以 $\Omega\gg\Omega^2$ (可忽略 Ω^2)。由(B)的結果,求低壓中心與高壓中心,在地球表面與中心切線水平方向吹向北方的風速 ν_R 。

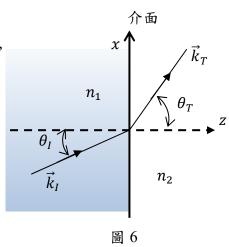

二、小球在半球面上的運動

如圖 4 所示,在均勻重力場下 $(\vec{g}=-g\hat{y})$,一個質量為m、半徑為 r_0 的均勻小球在一個半徑為 R_0 ,且固定於桌面上的半圓球面上之運動。初始時,小球在重力作用下

以幾乎為零的初速自半球的頂點開始運動。已知小球繞其質心轉動慣量為 $\frac{2}{5}mr_0^2$,

角度 θ 是自半球頂端算起, ψ 是指小球轉動的角度。

- (E) 承(D)小題,且小球與半球面間的動摩擦係數為 μ_k 。若定義小球恰好要開始滑動的時刻為 T_0 ,求 $\theta(T_0)$ 及 $\dot{\theta}(T_0)$,以 θ_3 ,g, R_0 , r_0 表示之。當 $\theta > \theta_3$ 時,小球開始滑動。列出此時 θ 所滿足的微分方程式。若小球繞其質心轉動的角速度為 $\dot{\psi}$,列出 ψ 所滿足的運動方程式。


三、全反射時的衰減波

衰減波(evanescent wave)是指當光波 從光密介質入射到光疏介質時,當發生 全反射時,在光疏介質一側會產生的一 種波。例如圖 5 所示,為利用衰減波原 理製成的分光鏡。若只有單片稜鏡,會 觀察到全反射現象,但若使用如圖所示 的兩片稜鏡,調整兩稜鏡的間隙(約為奈 米尺度),可以改變反射光和透射光的比 例。 光疏介質 光密 介質 足射光 圖 5

設光密介質折射率為 n_1 ,而光疏介質折射率為 n_2 ,如圖 6 所示。根據司乃耳定律:在臨界角 $\label{eq:theta} \mbox{時}\theta_I = \theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right)$ 時,折射角恰為 $\theta_T = 90^\circ$,

即穿透波恰好與介面平行。當 $\theta_I > \theta_c$ 時僅觀察 到反射波,而沒有折射波,此即為全反射的現 象。全反射時,雖然光疏介質中沒有折射波, 但場並不等於零,此即為衰減波形成的原因。 以下說明可以更了解衰減波;設入射光為單一

頻率 $\left(=\frac{\omega}{2\pi}\right)$ 的平面波,電場可用複數形式表示 為

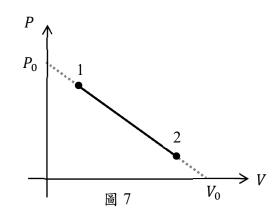
 $\tilde{E}_{I}(\vec{r},t) = \tilde{E}_{0I}e^{i(\vec{k}_{I}\cdot\vec{r}-\omega t)}$

其中 \tilde{E}_{0I} 為振幅, ω 為角頻率、 \vec{k}_{I} 是為波向量,即 $|\vec{k}_{I}| = \frac{\omega n_{1}}{c}$,c是光在真空中的波速。同理,透射波的電場(複數形式)可表示為

$$\tilde{E}_T(\vec{r},t) = \tilde{E}_{0T}e^{i(\vec{k}_T\cdot\vec{r}-\omega t)}$$

其中 $|\vec{k}_T| = \frac{\omega n_2}{c}$, 且可以寫成 $\hat{k}_T = \sin \theta_T \hat{x} + \cos \theta_T \hat{z}$ 。

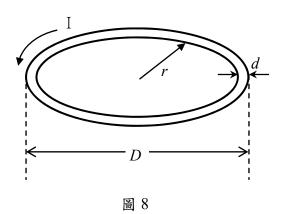
【註】在全反射情況下,依照折射定律會給出 $\sin \theta_T = \frac{n_1}{n_2} \sin \theta_I > 1$,而造成 $\cos \theta_T = \frac{n_1}{n_2} \sin \theta_I > 1$


 $\sqrt{1-\sin^2\theta_T}=i\sqrt{\sin^2\theta_T-1}$,其中 $i=\sqrt{-1}$ 。此時 θ_T 已經不同於一般角度的定義。

上述公式中的電場也因為計算方便,而表示成 $ilde{E}$ 的複數形式,而其"實部"即為 $ec{E}$ 。例如複數尤拉式為 $e^{i\omega t}=\cos\omega t+i\sin\omega t$,取實部時, $\mathrm{Re}\{e^{i\omega t}\}=\mathrm{Re}\{\cos\omega t+i\sin\omega t\}=\cos\omega t$ 。

- (A) 證明此衰減波沿平行介面的 x 方向行進,在垂直介面的 z 方向衰減。即: $\tilde{E}_T(\vec{r},t) = \tilde{E}_{0T} e^{-\delta z} e^{i(kx-\omega t)}$ 其中 $\delta \equiv \frac{\omega}{c} \sqrt{(n_1 \sin \theta_I)^2 n_2^2} \, \cdot \, k \equiv \frac{\omega n_1}{c} \sin \theta_I \, \circ$
- (B) 定義 $\frac{\cos \theta_T}{\cos \theta_I} \equiv \alpha$,已知全反射時 α 是一個純虚數,定義 $\beta \equiv \frac{\mu_1 v_1}{\mu_2 v_2} = \frac{\mu_1 n_2}{\mu_2 n_1}$,其中 μ_1 , μ_2 為光密介質和光疏介質的磁導率。若入射光電場 \vec{E}_I 平行入射面(即xz的平面)時,則每單位面積、每單位時間,有多少比例的能量被反射?即求其反射係數 R_{\parallel} 。 【註】:當入射光電場 \vec{E}_I 平行入射面時;由菲涅耳方程式(Fresnel's equation)可以得到: $\tilde{E}_{0R} = \left(\frac{\alpha \beta}{\alpha + \beta}\right) \tilde{E}_{0I}$, $\tilde{E}_{0T} = \left(\frac{2}{\alpha + \beta}\right) \tilde{E}_{0I}$;其中 \vec{E}_{0R} 為經由介面反射之電場。
- (C) 若入射光電場 \vec{E}_I 垂直入射面時,求此時的反射係數 R_\perp 。 【註】:當入射光電場 \vec{E}_I 平行入射面時;由菲涅耳方程式(Fresnel's equation)可以得到: $\tilde{E}_{0R} = \left(\frac{1-\alpha\beta}{1+\alpha\beta}\right)\tilde{E}_{0I}$, $\tilde{E}_{0T} = \left(\frac{2}{1+\alpha\beta}\right)\tilde{E}_{0I}$ 。
- (D) 在偏振方向垂直入射面的情況下,證明衰減波的電場及磁場的實部可寫為: $\vec{E}(\vec{r},t) = E_0 e^{-\delta z} \cos(kx-\omega t) \hat{y}$ $\vec{B}(\vec{r},t) = \frac{E_0}{\omega} e^{-\delta z} [\delta \sin(kx-\omega t) \hat{x} + k \cos(kx-\omega t) \hat{z}]$
 - 【註】:電磁波偏振方向定義為電場的方向;且電場與磁場關係為 $\tilde{B} = \frac{1}{v}(\hat{k} \times \tilde{E})$,其中 v 為電磁波傳遞速度, \hat{k} 為波前進方向的單位向量。
- (E) 計算波印廷向量 $\vec{S} = \frac{1}{\mu}(\vec{E} \times \vec{B})$,其中 μ 為介質的磁導率,且求其時間平均值;以此平均值解釋波能量傳播的方向,以及波能量與進入介質 2 的深度Z的關係。

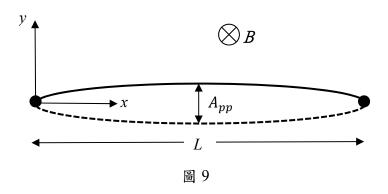
四、吸(放)熱與升(降)溫


一莫耳單原子理想氣體歷經一熱力學過程 $1 \to 2$,過程中其壓力—體積曲線可描述成如下圖 7 所示之線性關係。(**注意**: 除非特別聲明,本題答案請以圖中參數 $P_0 \times V_0 \times Q$ 氣體常數R表示。)

- (A) 試求在1→2熱力學過程中,該氣體的溫度最大值。
- (B) 此氣體在1→2熱力學過程中,在某一段體積範圍內為吸熱過程,另一段則為放 熱過程,試問氣體由吸熱轉為放熱時的臨界體積為何?
- (C) 氣體由吸熱轉為放熱時,其溫度與1→2過程中最高溫度的比值為何?
- (D) 若已知氣體在狀態 1 及狀態 2 時,其壓力分別為 $P_1 = \frac{3P_0}{4}$ 、 $P_2 = \frac{P_0}{4}$,則氣體在1 → 2熱力學過程中,共吸收(或放出)多少熱?
- (E) 承(D)小題,氣體在1→2熱力學過程中,其熵的變化量為何?

五、超導環

考慮一超導環如圖 8 所示,環直徑為D(= 2r=10~cm),線直徑為d=0.5~mm。超導線環進入超導態後,通入電流I=100~A,檢測超導電性,發現經過一年,未偵測到電流衰減。實驗中使用偵測器的靈敏度為 $1~\mu A$; 真空磁導率 $\mu_0=4\pi\times 10^{-7}~N/A^2$ 。試回答以下問題:


- (A) 求超導環的電威L。
- (B) 假設此超導環仍存在一個很小的電阻R,時間零點時(即t=0)起始電流I(0),計算電流I(t)隨時間t變化的關係式。
- (C) 承(B)題,超導環電阻率為 ρ ,計算在實驗誤差範圍內,估算超導環電阻率 (ρ) 的上限值。

六、在強磁場中振盪的吉他弦

在強磁場中彈奏吉他,可能發生危險嗎?某人在一磁場強度B=1.5 T的水平方向磁場中彈奏吉他,如圖 9 中進入紙面的磁場。假設他彈奏的弦之基頻f=330 Hz,彈奏時弦的 2 倍振幅值 $A_{pp}=1$ mm,如下圖 9 所示。

已知該弦長 $L=66~{\rm cm}$,且直徑為 $d=0.23~{mm}$,電阻率 $\rho=12~{\mu\Omega}\cdot{\rm cm}$,熱傳導係數 $k=80~{\rm W/m\cdot K}$,線密度為 $0.3~{\rm g/m}$,比熱為 $500~{\rm J/kg\cdot K}$,且兩端固定在溫度恆為 $20~{\rm cm}$ 00分金屬栓上。若彈奏時,該弦以正弦波形式在x-y平面上振動,且經由熱輻射、對流、以及由手指傳導流失的熱可以忽略,亦即熱僅能經由該弦傳導至金屬栓流入大氣,試回答以下問題:

- (A) 彈奏時,磁場在弦上產生的感應電動勢為何?
- (B) 該感應電動勢產生的平均電功率為何?
- (C) 理論上,該弦可能達到的最高溫度為何?

第1題共25分評分標準:

小題	內容	得分	備註
(A) 3 分	正確寫出 $\frac{d\hat{a}}{dt} = \vec{\omega} \times \hat{a}$	3	方向不正確者 得2分
(B) 14 分	列出 $\vec{v} = \left(\frac{dx'}{dt}\hat{\imath}' + \frac{dy'}{dt}\hat{\jmath}' + \frac{dz'}{dt}\hat{k}'\right) + \left(x'\frac{d\hat{\imath}'}{dt} + y'\frac{d\hat{\jmath}'}{dt} + z'\frac{d\hat{k}'}{dt}\right)$	3	
	求出 $\vec{v} = \frac{d\vec{r}}{dt} = \vec{v}_R + \vec{\Omega} \times \vec{r}$	4	
	求出 $\frac{d\vec{v}}{dt} = \frac{\vec{F}_R}{m} + 2\vec{\Omega} \times \vec{v}_R + \vec{\Omega} \times (\vec{\Omega} \times \vec{r})$	4	
	正確寫出 $\vec{F}_R = m \frac{d\vec{v}}{dt} - 2m(\vec{\Omega} \times \vec{v}_R) - m \vec{\Omega} \times (\vec{\Omega} \times \vec{r})$	3	
(C) 8分	寫出低壓中心 $(\rho S \Delta \ell) \frac{v_R^2}{\ell} = \Delta P \times S - 2(\rho S \Delta \ell) \Omega v_R \sin \lambda$	2	
	求出低壓中心 $v_R = \sqrt{(\ell\Omega\sin\lambda)^2 + \frac{\ell}{\rho}\frac{dP}{dr}} - \ell\Omega\sin\lambda$	2	
	寫出高壓中心 $(\rho S\Delta \ell) \frac{v_R^2}{\ell} = 2(\rho S\Delta \ell) \Omega v_R \sin \lambda - \Delta P \times S$	2	
	求出高壓中心 $v_R = \ell\Omega \sin \lambda - \sqrt{(\ell\Omega \sin \lambda)^2 - \frac{\ell}{\rho} \left \frac{dP}{d\ell} \right }$	2	

第2題共25分 評分標準:

$ \frac{(A)}{5 \hat{\beta}} \qquad \qquad \qquad \frac{1}{\text{E} \text{u} \hat{\beta}} = \sqrt{\frac{2g}{R_0}} (1 - \cos \theta) \qquad $	小題	內容	得分	備註
正確得出 $\cos\theta_0 = 2/3$ 2 (B) $6 \Rightarrow$ 求出 $\theta = \sqrt{\frac{\log}{7R_0}}(1 - \cos\theta)$ 1 正確得出正向力 $N = \frac{mg(17\cos\theta - 10)}{7}$ 2 正確得出 $\cos\theta_1 = 10/17$ 2 判断 $\theta_1 > \theta_0$ 1 (C) $g t t \frac{7}{5} mR_0^2 \dot{\theta} \dot{\theta} - mgR_0 \dot{\theta} \sin\theta = 0$ 1 θ 會消掉	` ′	求出 $\dot{\theta} = \sqrt{\frac{2g}{R_0}(1 - \cos \theta)}$	1	
(B) $\frac{1}{6}$ 求出 $\hat{\theta} = \sqrt{\frac{\log}{7R_0}}(1 - \cos\theta)$ 1 正確得出正向力 $N = \frac{mg(17\cos\theta - 10)}{7}$ 2 正確得出 $\cos\theta_1 = 10/17$ 2 判断 $\theta_1 > \theta_0$ 1 (C) 第出 $\frac{7}{8}mR_0^3\hat{\theta}\hat{\theta} - mgR_0\hat{\theta}\sin\theta = 0$ 1 $\hat{\theta}$ 含消掉 3 $\frac{1}{8}mR_0^3\hat{\theta}\hat{\theta} - mgR_0\hat{\theta} = 0$ 1 $\frac{1}{8}mR_0^3\hat{\theta}\hat{\theta} - mgR_0\hat{\theta} = 0$ 2 $\frac{1}{8}mR_0^3\hat{\theta}\hat{\theta} - mgR_0\hat{\theta} = 0$ 1 $\frac{1}{8}mR_0^3\hat{\theta}\hat{\theta} - mgR_0\hat{\theta} = 0$ 1 $\frac{1}{8}mR_0^3\hat{\theta}\hat{\theta} - mgR_0\hat{\theta} = 0$ 1 $\frac{1}{8}mR_0^3\hat{\theta} + \frac{1}{8}mR_0^3\hat{\theta} = \frac{1}{8}mR_0^3\hat{\theta} \frac{1}{8}mR_0^3\hat{\theta} =$		正確得出 $N = mg(3\cos\theta - 2)$	2	
(C) (C) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (E) (D) (E) (D) (E) (D) (E) (E) (E) (E) (B) (B) (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (B) (B) (C) (B) (C) (B) (C) (B) (C) (C) (C) (D) (B) (B) (C) (C) (C) (D) (B) (B) (C) (正確得出 $\cos \theta_0 = 2/3$	2	
正確得出 $\cos\theta_1 = 10/17$ 2 月断 $\theta_1 > \theta_0$ 1 $\theta_2 > \theta_1$ $\theta_1 > \theta_0$ 1 $\theta_1 > \theta_2$ 1 $\theta_1 > \theta_1 > \theta_2$ 1 $\theta_1 > \theta_1 > \theta_2$ 1 $\theta_1 > \theta_1 > \theta_2$ 2 $\theta_1 > \theta_1 > \theta_2$ 2 $\theta_1 > \theta_1 > \theta_2$ 3 $\theta_1 > \theta_1 > \theta_2$ 1 $\theta_1 > \theta_1 > \theta_2$ 2 $\theta_1 > \theta_1 > \theta_1 > \theta_2$ 3 $\theta_1 > \theta_1 > \theta_1 > \theta_2$ 3 $\theta_1 > \theta_1 > \theta_1 > \theta_1 > \theta_2$ 3 $\theta_1 > \theta_1 > \theta_1 > \theta_1 > \theta_1 > \theta_2$ 3 $\theta_1 > \theta_1 > \theta$	` ′	求出 $\dot{\theta} = \sqrt{\frac{10g}{7R_0}(1-\cos\theta)}$	1	
判断 $\theta_1 > \theta_0$		正確得出正向力 $N = \frac{mg(17\cos\theta-10)}{7}$	2	
(C)		正確得出 $\cos \theta_1 = 10/17$	2	
		判斷 $ heta_1 > heta_0$	1	
得出産係分 = $mg \sin \theta - mR_0\theta = 2mg \sin \theta / 7$ 得出 $2 \sin \theta \le \mu_s (17 \cos \theta - 10)$ 2 判斷 $\theta_1 > \theta_2$ 1 (D)		寫出 $\frac{7}{5}mR_0^2\ddot{\theta}\dot{\theta} - mgR_0\dot{\theta}\sin\theta = 0$	1	θ 會消掉
判断 $\theta_1 > \theta_2$ (D)	5分		1	
(D) 4分		得出 $2\sin\theta \le \mu_s(17\cos\theta - 10)$	2	
		判斷 $\theta_1 > \theta_2$	1	
	` ′		1	
$\frac{7}{10}m\{(R_0+r_0)\dot{\theta}\}^2 + mg(R_0+r_0)(\cos\theta-1) = 0$ $\frac{7}{10}m\{(R_0+r_0)\dot{\theta}\}^2 + mg(R_0+r_0)(\cos\theta-1) = 0$ $\frac{7}{10}m\{(R_0+r_0)\dot{\theta}\}^2 + mg(R_0+r_0)(\cos\theta-1) = 0$ $\frac{7}{10}m\{(R_0+r_0)\dot{\theta}\}^2 + mg(R_0+r_0)\ddot{\theta} = 2mg\sin\theta/7$ $\frac{7}{10}m\{(R_0+r_0)\dot{\theta}\}^2 + mg(R_0+r_0)\ddot{\theta} = 2mg\sin\theta/7$ $\frac{7}{10}m\{(R_0+r_0)\dot{\theta}\}^2 + mg(R_0+r_0)\dot{\theta} = 1$ $\frac{7}{10}m\{(R_0+r_0)\dot{\theta}\}^2 + mg(R_0+$	4分		_	
$= mg \sin \theta - m(R_0 + r_0)\ddot{\theta} = 2mg \sin \theta / 7$ 判斷 $\theta_3 = \theta_2$ 1 (E)		7	1	
(E) (E)			1	
5分		判斷 $ heta_3 = heta_2$	1	
寫出 $\theta(T_0) = \theta_3$; $\theta(T_0) = \sqrt{\frac{3}{7(R_0 + r_0)}}$ 2 寫出運動方程式(力矩): $\mu_k NR_0 - mg \sin \theta (R_0 + r_0) + m(R_0 + r_0)^2 \ddot{\theta} + 1$ $\frac{2}{5} m r_0^2 \ddot{\psi} = 0$ $g + (R_0 + r_0) \ddot{\theta} - a \sin \theta + \frac{2}{5} r_0 \ddot{\psi} = 0$	` ′	寫出 $r_0\dot{\psi} = (R_0 + r_0)\dot{\theta}$	1	
$mg \sin \theta (R_0 + r_0) + m(R_0 + r_0)^2 \ddot{\theta} + \frac{2}{5} mr_0^2 \ddot{\psi} = 0$ $\ddot{\Xi} + (R_0 + r_0) \ddot{\theta} - a \sin \theta + \frac{2}{5} r_0 \ddot{\psi} = 0$		寫出 $\theta(T_0) = \theta_3$; $\dot{\theta}(T_0) = \sqrt{\frac{10g(1-\cos\theta_3)}{7(R_0+r_0)}}$	2	各 1 分。 $\theta_3 = \theta_2$
$\frac{2}{5}mr_0^2\ddot{\psi} = 0$ $\frac{2}{5}m(R_2 + r_2)\ddot{\theta} - a\sin\theta + \frac{2}{5}r_2\ddot{\psi} = 0$		寫出運動方程式(力矩): μ _k NR ₀ -		
$g + (R_1 + r_1)\ddot{\theta} = a \sin \theta + \frac{2}{2}r_1\ddot{\eta} = 0$			1	
寫出 $(R_0 + r_0)\ddot{\theta} - g\sin\theta + \frac{2}{5}r_0\ddot{\psi} = 0$		$\frac{1}{5}mr_0^2\psi=0$		
		寫出 $(R_0 + r_0)\ddot{\theta} - g\sin\theta + \frac{2}{5}r_0\ddot{\psi} = 0$	1	

第3題共25分 評分標準:

小題	內容	得分	備註
(A) 4分	求出 $\vec{k}_T \cdot \vec{r} = xk_T \sin \theta_T + izk_T \sqrt{\sin^2 \theta_T - 1}$	1	
	寫出 $k = k_T \sin \theta_T = \frac{\omega n_1}{c} \sin \theta_I$	1	
	寫出 $\delta = k_T \sqrt{\sin^2 \theta_T - 1} = \frac{\omega}{c} \sqrt{n_1^2 \sin^2 \theta_I - n_2^2}$	1	
	正確寫出 $\tilde{E}_T(\vec{r},t) = \tilde{E}_{0T}e^{-\delta z}e^{i(kx-\omega t)}$	1	
(B) 4 分	列出 $R = \left \frac{\tilde{E}_{0R}}{\tilde{E}_{0I}} \right ^2$	2	
	求出 R=1	2	
(C) 2分	求出 R=1	2	
(D) 8分	寫出: $\sin \theta_T = \frac{c \ k}{\omega n_2}, \qquad \cos \theta_T = i \frac{c \delta}{\omega n_2}$ 寫出 $\tilde{E}_T(\vec{r}, t) = \tilde{E}_{0T} e^{-\delta z} e^{i(kx - \omega t)} \hat{y}$	2	
	寫出 $\tilde{E}_T(\vec{r},t) = \tilde{E}_{0T}e^{-\delta z}e^{i(kx-\omega t)}\hat{y}$	2	
	求得 $\tilde{B}_T(\vec{r},t) =$ $\frac{1}{v_2} \tilde{E}_{0_T} e^{-\delta z} e^{i(kx - \omega t)} (-\cos \theta_T \hat{x} + \sin \theta_T \hat{z})$	2	
	正確得到 $\vec{E}_T(\vec{r},t) = E_0 e^{-\delta z} \cos(kx - \omega t) \hat{y}$ $\vec{B}_T(\vec{r},t) = \frac{1}{\omega} E_0 e^{-\delta z} (\delta \sin(kx - \omega t) \hat{x} + k \cos(kx - \omega t) \hat{z})$	2	
(E) 7分	求得 $\vec{S} = \frac{E_0^2}{\mu_2 \omega} e^{-2\delta z} [k \cos^2(kx - \omega t) \hat{x} - \delta \sin(kx - \omega t) \cos(kx - \omega t) \hat{z}]$	2	
	求得 $\langle \vec{S} \rangle = \frac{kE_0^2}{2\mu_2\omega} e^{-2\delta z} \hat{x}$	3	
	說明:波沿 x 方向傳遞,能量隨 z 增加以 $e^{-2\delta z}$ 遞減。	2	

第4題共25分 評分標準:

小題	內容	得分	備註
(A)	D		TA UL
5分	列出 $P = P_0 - (\frac{P_0}{V_0}) \cdot V$	1	
	寫出		
	$RT = \frac{P_0}{V_0}V(V_0 - V)$	1	
	寫出當最高溫時 $\frac{d[V(V_0-V)]}{dV}=0$ 或求最高溫時的體積為 $V_0/2$	1	
	正確得到最高溫 $T_m = \frac{P_0 V_0}{4R}$	2	
(B) 7分	列出 $\Delta U = \frac{3}{2}R(\Delta T)$	1	
	寫出熱 $Q = 2P_xV_x + \frac{1}{2}P_1V_x - \frac{1}{2}P_xV_1 - 2P_1V_1$	1	
	列出熱與體積的關係 $Q = -2\left(\frac{P_0}{V_0}\right)\left[V_x^2 - \frac{5}{4}V_0V_x + \left(\frac{5}{4} - \frac{V_1}{V_0}\right)V_0V_1\right]$	1	
	列出臨界體積時 $\frac{dQ}{dV} = 0$	2	
	正確求得臨界體積 $V_c = \frac{5}{8}V_0$	2	
(C)	求出 $T_c = \frac{15P_0V_0}{64R}$	2	
3分	求出 $T_c = \frac{15P_0V_0}{64R}$ 正確求得比值 $\frac{T_c}{T_m} = \frac{15}{16}$	1	
(D) 5分	求得: $V_2 = \frac{3}{4}V_0 , \qquad V_1 = \frac{1}{4}V_0$ 得: $\Delta Q_{1\to 2} = \frac{P_0 V_0}{4}$	2	
	得: $\Delta Q_{1\to 2} = \frac{P_0 V_0}{4}$	2	
	註明為吸熱	1	
(E) 5分	寫出: $dS = \frac{dQ}{T} = \frac{3}{2}R\frac{dT}{T} + R\frac{dV}{V}$	2	
	正確得出: $\Delta S_{1\rightarrow 2} = R \ln \frac{V_2}{V_1} = R \ln 3$	3	

第5題共25分 評分標準:

小題	內容	得分	備註
(A) 5 分	列出 $\mathbf{L} = \frac{\mathbf{\Phi}}{I}$	2	
	寫出正確答案 $L = \frac{\mu_0 \pi r}{2}$	3	
(B) 5分	列出 $-L\frac{dI}{dt} = RI$	2	
	求出 $I(t) = I(0)e^{-\frac{R}{L}t}$	3	
(C) 15 分	寫出 $e^{-\frac{R}{L}t} \approx 1 - \frac{R}{L}t$ 寫出 $R = \rho \frac{\ell}{A}$	2	
	寫出 $R = \rho \frac{\ell}{A}$	2	
	寫出 $R = \frac{\Delta I}{I(0)} \frac{\mu_0 \pi r}{2t}$	5	
	求出正確電阻 $R = 3.13 \times 10^{-23} \Omega$	3	
	求出正確電阻率 $ρ = 1.95 \times 10^{-29} Ω \cdot m$	3	

第6題共25分評分標準:

小題	內容	得分	備註
(A)	寫出磁通量		
6分	$= B \int_0^L \frac{A_{pp}}{2} \sin \omega t \sin \frac{\pi x}{L} dx = -\frac{\omega}{\pi} B L A_{pp} \sin \omega t$	4	
	得出正確電動勢大小:		
	$ \epsilon = \left B \frac{dA}{dt} \right = \left -2BLA_{pp}f \cos \omega t \right $	2	
(B) 6分	列出一小段弦電功率 $dP = \frac{(d \in)^2}{R}$ $= \frac{aB^2 A_{pp}^2 \omega^2}{4\rho} (\cos^2 \omega t) (\sin^2 \frac{\pi x}{L}) dx$	2	$a = \pi \left(\frac{d}{2}\right)^2$ 為弦 的截面積
	求出平均一小段弦電功率 $< dP >$ $= (\frac{aB^2 A_{pp}^2 \omega^2}{4\rho})(\sin^2 \frac{\pi x}{L})dx < \cos^2 \omega t >$	2	
	$= \left(\frac{aB^2A_{pp}^2\pi^2f^2}{2\rho}\right)(\sin^2\frac{\pi x}{L})dx$		
	求出整條弦平均電功率 $< P >= \int_0^L < dP >$	2	
(C) 13 分	寫出最高溫在弦的中點 $x = \frac{L}{2}$	3	
	列出 $\frac{dQ}{dt} = -ka\frac{dT}{dx} = \int_{\frac{L}{2}}^{x} \langle dP \rangle$	3	積分上下限不正 確給 2 分
	得出弦上溫度與位置關係 $\frac{dT}{dx} = \frac{B^2 A_{pp}^2 \pi^2 f^2}{8k\rho} (L - 2x + \frac{L}{\pi} \sin \frac{2\pi x}{L})$	2	
	得出弦上溫度與位置關係 $T\left(\frac{L}{2}\right) = \frac{B^2 A_{pp}^2 L^2 f^2}{8k\rho} \left(\frac{\pi^2}{4} + 1\right) + T(0)$	2	
	得到正確數值 $T\left(\frac{L}{2}\right) \approx 5100 \text{ K}$	3	